• Title/Summary/Keyword: Initial imperfection

Search Result 185, Processing Time 0.025 seconds

Numerical Evaluation of Lateral-Torsional Buckling Strength in I-section Plate Girder Bridges (I-단면 플레이트거더교의 횡비틀림 좌굴강도의 해석적 평가)

  • Park, Yong Myung;Hwang, Soon Young;Park, Jae Bong;Hwang, Min Oh;Choi, Byung H.
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.321-330
    • /
    • 2009
  • This paper presents numerical analysis results for the lateral-torsional buckling (LTB) strength of steel I-girder bridges. Current Korean and AASHTO design specifications for LTB consider the buckling strength of a single girder with both its ends constrained. The I-girder bridges are composed of more than one girder, and the girders are interconnected with intermediate cross-beams or cross-frames. Therefore, it should be required to evaluate the effects of cross-beam stiffness and the interactionof girders on LTB strength. It is also necessary to consider the effects of transverse web stiffeners on LTB strength. By considering these parameters, a series of four-girder systemswere numerically modeled using 3D shell elements to estimate the LTB strength while considering initial imperfections and residual stresses.

A Study on Moment Gradient Factor for Inelastic Lateral-Torsional Buckling Strength of Stepped I-Beam Subjected to Linear Moment Gradient (선형 모멘트 하중을 받는 계단식 단면변화 I형보의 비탄성 횡-비틀림 좌굴강도산정을 위한 모멘트 구배계수 연구)

  • Park, Jong-Sup;Son, Ji-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.53-60
    • /
    • 2008
  • The cross-sections of continuous multi-span beams sometimes suddenly increase, or become stepped, at the interior supports of continuous beams to resist high negative moments. The three-dimensional finite-element program ABAQUS (2007) was used to analytically investigate the inelastic lateral-torsional buckling behavior of stepped beams subjected to linear moment gradient and resulted in the development of design equations. The ratios of the flange thickness, flange width, and stepped length of beam are considered for the analytical parameters. Two groups of 27 cases and 36 cases, respectively, were analyzed for doubly and singly stepped beams in the inelastic buckling range. The combined effects of residual stresses and geometrical imperfection on inelastic lateral-torsional buckling of beams are considered. First, the distributions of residual stress of the cross-section is same as shown in Pi and Trahair (1995), and the initial geometric imperfection of the beam is set by central displacement equal to 0.1% of the unbraced length of beam. The new proposed equations definitely improve current design methods for the inelastic lateral-torsional buckling problem and increase efficiency in building and bridge design.

A Study on Moment Gradient Factor for Inelastic Lateral-Torsional Buckling of Stepped I-Beam Subjected to Uniformly Distributed Load and End Moment (연속경간 하중을 받는 I형 스텝보의 비탄성 횡-비틀림 좌굴강도산정을 위한 모멘트 구배계수 연구)

  • Son, Ji-Min;Park, Jong-Sup
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.1-9
    • /
    • 2009
  • This paper investigates inelastic lateral-torsional buckling of stepped beams subjected to uniformly distributed load and end moments. A three-dimensional finite-element program ABAQUS (2007) and a regression program MINITAB(2006) were used to analytically develop new design equation for singly and doubly stepped beams with simple boundary condition. The flanges of the smaller cross-section in the stepped beams were fixed at 30.48 by 2.54 cm, whereas the width and thickness of the flanges of the larger cross-section varied. The web thickness and height of the beams were kept at 1.65 cm and 88.9 cm, respectively. The ratios of the flange thickness, flange width, and stepped length of beam are considered with analytical parameters. Two groups of 27 cases and 36 cases, respectively, were analyzed for doubly and singly stepped beams in the inelastic buckling range. The combined effects of residual stresses and geometrical imperfection on inelastic lateral-torsional buckling of beams are considered. The distributions of residual stress of the cross-section is same as shown in Pi and Trahair (1995) and the initial geometric imperfection of the beam is set by central displacement equal to 0.1% of the unbraced length of beam. The comparisons between results from proposed equations and the results from finite element analyses were presented in this paper. The maximum differences of two results are of 13% for the doubly stepped beam and 10% for the singly stepped beam. The proposed equations definitely improve current design methods for the inelastic lateral-torsional buckling problem and increase efficiency in building and bridge design.

A Study on Inelastic Lateral-Torsional Buckling of Stepped I-Beams Subjected to Pure Bending (균일모멘트를 받는 계단식 I형보의 비탄성 횡-비틀림 좌굴에 관한 연구)

  • Kim, Jong Min;Kim, Seung Jun;Park, Jong Sup;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.237-246
    • /
    • 2008
  • The cross-sections of continuous multi-span beams sometimes suddenly increase, or become stepped, at the interior supports of continuous beams to resist high negative moments. The three-dimensional finite-element program ABAQUS (2006) was used to analytically investigate the inelastic lateral-torsional buckling behavior of stepped beams subjected to pure bending moment and resulted in the development of design equations. The flanges of the smaller cross-section were fixed at 30.48 by 2.54 cm, whereas the width and/or thickness of the flanges of the larger cross-section varied. The web thickness and height of beam was kept at 1.65 cm and 88.9 cm, respectively. The ratios of the flange thickness, flange width, and stepped length of beams are considered analytical parameters. Two groups of 27 cases and 35 cases, respectively, were analyzed for double and single stepped beams. The combined effects of residual stresses and geometrical imperfection on inelastic lateral-torsional buckling of beams are considered. First, the distributions of residual stress of the cross-section is same as shown in Pi, etc (1995), and the initial geometric imperfection of the beam is set by central displacement equal to 0.1% of the unbraced length of beam. The new proposed equations definitely improve current design methods for the inelastic LTB problem and increase efficiency in building and bridge design. The proposed solutions can be easily used to develop new design equation for inelastic LTB resistance of stepped beams subjected to general loading condition such as a concentrated load, a series of concentrated loads or uniformly distributed load.

Evaluation of Flexural Strength of Hybrid Girder composed of HSB800 and HSB600 Steel (HSB800 및 HSB600 강재를 적용한 하이브리드거더의 휨강도 평가)

  • Park, Yong Myung;Kang, Ji Hoon;Lee, Kun Joon;Kim, Hee Soon
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.581-594
    • /
    • 2014
  • In this paper, flexural resistance of hybrid girder under uniform bending moment was evaluated, which is composed of HSB800 and HSB600 steel for the flange and web, respectively. Doubly-symmetric and monosymmetric sections with noncompact or compact flange and slender, noncompact or compact web were considered. Nonlinear analyses with 3-dim. shell element model were performed to determine the 'flexural resistance of section' and the 'lateral torsional buckling strength' by taking initial imperfection and residual stress into account. The numerical results were compared with the AASHTO LRFD and Eurocode 3 specifications and also the applicability of AASHTO LRFD appendix A6 was examined for the sections with noncompact and compact web.

Postbuckling Analyses and Derivations of Shell Knockdown Factors for Isogrid-Stiffened Cylinders Under Compressive Force and Internal Pressure (압축력과 내부 압력을 동시에 받는 등방성 격자 원통 구조의 후좌굴 해석 및 좌굴 Knockdown factor의 도출)

  • Kim, Han-Il;Sim, Chang-Hoon;Park, Jae-Sang;Kim, Do-Young;Yoo, Joon-Tae;Yoon, Young-Ha;Lee, Keejoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.653-661
    • /
    • 2020
  • This study derives numerically the shell Knockdown factors for the isogrid-stiffened cylinders of space launch vehicles when the axially compressive force and internal pressure are applied simultaneously. A commercial nonlinear finite element analysis software, ABAQUS, is used for the present work. Nonlinear postbuckling analyses are conducted to calculate the global buckling loads of a cylinder without and with the internal pressure. The shell Knockdown factor is numerically derived using the predicted global buckling loads without and with the geometrically initial imperfection of a cylinder. When the internal pressure of 500 kPa and compressive force are applied to the cylinder, the global buckling load and Knockdown factor increases by 304% and 53%, respectively, as compared to the results without the internal pressure.

Development of Nonlinear Analysis Technic to Determine the Ultimate Load in Electric Transmission Tower (송전철탑의 극한하중 도출을 위한 비선형해석 기법)

  • Kim, Woo Bum;Choi, Byong Jeong;Ahn, Jin Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.389-398
    • /
    • 2008
  • The current design practice of electric transmission tower is based on the allowable stress design. However, it is difficult to find the cause behind a transmission tower's collapse by the above design approach as the collapse is caused by large secondary deformations based on and geometrical nonlinear behavior.influence factor for the nonlinear behavior is mainly residual stress, initial imperfection and end restraints on members. In this study, the necessity of the nonlinear analysis is examined through the comparison between elastic ana the nonlinear analysis, a new analytical method (equivalent nonlinear analysis technique) is proposed. To confirm the reliability of the proposed method, the computed ultimate load of the transmission tower using the method was compared with that of the nonlinear finite element analysis. Effects of parameters, such as compressive force and the slenderness ratio of the brace member on the main post member, were investigated. The effective member length according to influential parameters was formulated in table form for practical purposes.

Comprehensive investigation of buckling behavior of plates considering effects of holes

  • Mohammadzadeh, Behzad;Choi, Eunsoo;Kim, Woo Jin
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.261-275
    • /
    • 2018
  • A comprehensive study was provided to investigate the buckling behavior of the steel plates with and without through-thickness holes subjected to uniaxial compression using ABAQUS. The method was validated by the results reported in the literature. Using the critical stresses, the buckling coefficients ($K_c$) were calculated. The effects of inclusion of material nonlinearity, plate thickness (t), aspect ratio (AR), and initial imperfection on buckling resistance of the plate was studied. Besides, the effects of having the hole in the plate were also studied. The diameter of the hole was normalized by dividing by plate breadth and was given in the form of ${\alpha}$. Results showed that perforating one hole in the center of a plate increases the plate buckling resistance while the having two holes resulted in a decrease in the plate buckling resistance. The effects of hole eccentricity (Ecc) on the buckling resistance of the plate was studied. The position of the hole center was normalized by half of the plate breadth and length in X- and Y-directions, respectively. In this study, four cases of boundary conditions were considered, and the corresponding buckling behavior were studied combined with plate aspect ratio. It was observed that the boundary condition of the case I resulted in the highest buckling resistance. Finally, a comparison was made between the buckling behavior of the uniaxially and biaxially loaded plate. It was revealed that the buckling resistance of a biaxially loaded plate is lower half than half of that of the uniaxially loaded plate.

Behaviour and design of demountable steel column-column connections

  • Li, Dongxu;Uy, Brian;Patel, Vipul;Aslani, Farhad
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.429-448
    • /
    • 2016
  • This paper presents a finite element (FE) model for predicting the behaviour of steel column-column connections under axial compression and tension. A robustness approach is utilised for the design of steel column-column connections. The FE models take into account for the effects of initial geometric imperfections, material nonlinearities and geometric nonlinearities. The accuracy of the FE models is examined by comparing the predicted results with independent experimental results. It is demonstrated that the FE models accurately predict the ultimate axial strengths and load-deflection curves for steel column-column connections. A parametric study is carried out to investigate the effects of slenderness ratio, contact surface imperfection, thickness of cover-plates, end-plate thickness and bolt position. The buckling strengths of steel column-column connections with contact surface imperfections are compared with design strengths obtained from Australian Standards AS4100 (1998) and Eurocode 3 (2005). It is found that the column connections with maximum allowable imperfections satisfy the design requirements. Furthermore, the steel column-column connections analysed in this paper can be dismantled and reused safely under typical service loads which are usually less than 40% of ultimate axial strengths. The results indicate that steel column-column connections can be demounted at 50% of the ultimate axial load which is greater than typical service load.

Buckling Test and Non-linear Analysis of Aluminium Isogrid Panel (알루미늄 lsogrid 패널의 좌굴시험 및 비선형 해석)

  • Yoo, Joon-Tae;Lee, Jong-Woong;Yoon, Jong-Hoon;Jang, Young-Soon;Yi, Yeong-Moo;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.35-40
    • /
    • 2005
  • There are many methods to reinforce the cylindrical structure for light weight design like skin-stringer and semi-monocoque. Isogrid is one of the reinforced structures to improve buckling load. Isogrid has many advantages for complex load case, internal pressure and concentrated load.In this paper, compressive buckling test and non-linear FE analysis of the isogrid panel are described. Diameter of panel is 2.4m and thickness of plate is 11.43mm. The angle which the panel accomplish is about 70 degrees and, its height is about 660mm. Local buckling, global buckling and variation of stiffness after local buckling were observed during buckling test of the panel. MSC/MARC is used for non-linear FE analysis. When analysis, initial imperfection of panel which occurred during plastic forming is considered. The results of analysis for buckling mode and buckling load have good agreements with test.