• Title/Summary/Keyword: Initial imperfection

Search Result 185, Processing Time 0.031 seconds

Analysis of Wrinkling for Creased Thin Membrane (접힌 자국이 있는 멤브레인의 주름 거동 해석)

  • Woo, Kyeong-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.851-858
    • /
    • 2008
  • In this paper, the wrinkling behavior of vertically creased corner-loaded square membranes was studied using geometrically nonlinear post-buckling analysis. The membranes were modeled using shell elements, and the meshes were seeded with semi-random geometrical imperfection to instigate the buckling deformation. A pristine and creased membranes with various initial deployment angles were considered in the analyses and the results were compared. Results showed that local wrinkles initiated near the corner where the higher load was applied, which grew to form a single diagonal global wrinkle as the load ratio increased. It was also found that the local wrinkle initiation and the global wrinkle formation were significantly dependent on the initial deployment angles.

A force-based element for direct analysis using stress-resultant plasticity model

  • Du, Zuo-Lei;Liu, Yao-Peng;Chan, Siu-Lai
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.175-186
    • /
    • 2018
  • The plastic hinge method and the plastic zone method are extensively adopted in displacement-based elements and force-based elements respectively for second-order inelastic analysis. The former enhances the computational efficiency with relatively less accurate results while the latter precisely predicts the structural behavior but generally requires more computer time. The displacement-based elements receive criticism mainly on plasticity dominated problems not only in accuracy but also in longer computer time to redistribute the forces due to formation of plastic hinges. The multi-element-per-member model relieves this problem to some extent but will induce a new problem in modeling of member initial imperfections required in design codes for direct analysis. On the contrary, a force-based element with several integration points is sufficient for material yielding. However, use of more integration points or elements associated with fiber section reduces computational efficiency. In this paper, a new force-based element equipped with stress-resultant plasticity model with minimal computational cost is proposed for second-order inelastic analysis. This element is able to take the member initial bowing into account such that one-element-per-member model is adequate and complied with the codified requirements of direct analysis. This innovative solution is new and practical for routine design. Finally, several examples demonstrate the validity and accuracy of the proposed method.

Influence of initial imperfections on ultimate strength of spherical shells

  • Yu, Chang-Li;Chen, Zhan-Tao;Chen, Chao;Chen, Yan-ting
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.473-483
    • /
    • 2017
  • Comprehensive consideration regarding influence mechanisms of initial imperfections on ultimate strength of spherical shells is taken to satisfy requirement of deep-sea structural design. The feasibility of innovative numerical procedure that combines welding simulation and non-linear buckling analysis is verified by a good agreement to experimental and theoretical results. Spherical shells with a series of wall thicknesses to radius ratios are studied. Residual stress and deformations from welding process are investigated separately. Variant influence mechanisms are discovered. Residual stress is demonstrated to be influential to stress field and buckling behavior but not to the ultimate strength. Deformations are proved to have a significant impact on ultimate strength. When central angles are less than critical value, concave magnitudes reduce ultimate strengths linearly. However, deformations with central angles above critical value are of much greater harm. Less imperfection susceptibility is found in spherical shells with larger wall thicknesses to radius ratios.

A Study on Design of Fillet Weld Size for Stiffener in the Hull Bottom of Crude Oil Tanker (Crude Oil Tanker 선저부 보강재 필렛 용접부 각장 설계에 관한 연구)

  • Kang, Bong-Gook;Shin, Sang-Beom;Park, Dong-Hwan
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.79-86
    • /
    • 2014
  • The purpose of this study is to determine the proper fillet weld size for the stiffeners on hull bottom plate of crude oil tanker. To achieve it, the effective notch stress and hot spot stress of the fillet weld with leg length specified in the rule were evaluated by using comprehensive FE analyses. Based on the results, the fatigue damages at each location of weld were calculated. Meanwhile the transitional behavior of initial welding distortion in the hull bottom plate under the design conditions was investigated by using a non-linear FEA. Welding distortion and residual stress introduced during fabrication process were considered as initial imperfections. According to FE analysis results, if the fillet leg length satisfies the design criteria of the classification society, the concern on the root failure at the fillet welds in the bottom hull plate during the design life can be negligible. In addition, considering the transitional behavior of the distortion during the service life, the fillet leg length should be minimized.

A Study on the Characteristic of Stress Behavior of Topside Weldment Welded after Launching (진수후 데크 topside 용접부의 응력 거동 특성에 관한 연구)

  • Lee, Dong-Ju;Shin, Sang-Beom
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.58-58
    • /
    • 2010
  • The purpose of this study is to evaluate the structural safety at the topside weldment of hull structure, which was welded after launching. For it, the variations of residual stress and distortion at the topside weldment with loading conditions such as hull girder hogging bending moment after launching and free initial loading state was evaluated by using FEA. And the maximum stress range at the weldment under design loads specified by classification society was evaluated by FEA. In this case, the residual stress and welding distortion at the topside weldment was assumed to be initial imperfection. In accordance with FEA results, regardless of initial loading condition, tensile residual stress was found. However, the residual stress and welding distortion at the topside weldment produced under hogging condition was less than those of topside weldment under free loading state. That is, the amount of residual stress at the topside weldment decreased with an increase in the amount of tension load caused by hogging condition. It was because the compressive thermal strain at the topside weldment produced during welding was reduced by tensile load. However, the maximum stress range at the topside weldment under maximum hull girder bending moment was almost similar regardless of initial loading condition. So, if the problem related to the soundness of weldment is not introduced by initial load, the effect of initial loading condition during welding on fatigue strength of topside weldment could be negligible.

  • PDF

A Study on the Characteristics of Nonlinear Unstable Phenomenon According to the Shape Variation of Cable Domes (케이블 돔 구조물의 형태 변화에 따른 비선형 불안정 거동의 특성에 관한 연구)

  • Kim, Seung Deog;Back, In Seong;Kim, Hyung Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.345-353
    • /
    • 2004
  • One of the key issues in spatial structures with large spaces is how to carry the weight of the roof. This can be solved by the effective use of tension members. A cable dome structural system facilitates the construction of a large space structure. As external load increases, however, the cable dome structural system is put at risk due to global buckling. This study measures the shape of the Geiger and Flower-type cable dome by applying an initial stress. This unstable phenomenon is also examined using a perfectly shaped model and an imperfect model, which are both subjected to an axisymmetric load.

The Instability Behavior of Shallow Sinusoidal Arches(2) : Classification of Dynamic Buckling under Step Pressure (얕은 정현형 아치의 불안정 거동에 관한 연구(2) : 스텝하중에서의 동적좌굴 특성)

  • 김승덕;박지윤;권택진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.417-426
    • /
    • 1999
  • The some papers which deal with the dynamic instability for shell-like structures under the step load have been published, but there are few papers which treat the essential phenomenon of the dynamic buckling using the phase plane for investigating occurrence of chaos. In nonlinear dynamics, examining the characteristics of attractor on the phase plane and investigating the dynamic buckling process are very important thing for understanding why unstable phenomena are sensitively originated by various initial conditions. In this study, the direct and the indirect snap-buckling of shallow arches considering geometrical nonlinearity are investigated numerically and compared with the static critical load.

  • PDF

Resisting Strength of Ring-Stiffened Cylindrical Steel Shell under Uniform External Pressure (균일외압을 받는 링보강 원형단면 강재 쉘의 강도특성)

  • Ahn, Joon Tae;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.1
    • /
    • pp.25-35
    • /
    • 2018
  • Resisting strength of ring-stiffened cylindrical steel shell under uniform external pressure was evaluated by geometrically and materially nonlinear finite element method. The effects of shape and amplitude of geometric initial imperfection, radius to thickness ratio, and spacing of ring stiffeners on the resisting strength of ring-stiffened shell were analyzed. The resisting strength of ring-stiffened cylindrical shells made of SM490 obtained by FEA were compared with design strengths specified in Eurocode 3 and DNV-RP-C202. The shell buckling modes obtained from a linear elastic bifurcation FE analysis were introduced in the nonlinear FE analysis as initial geometric imperfections. The radius to thickness ratios of cylindrical shell in the range of 250 to 500 were considered.

Yield and Fracture of Paper

  • Park, Jong-moon;James L. Thorpe
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.57-72
    • /
    • 1999
  • Traditional theories of the tensile failure of paper have assumed that uniform strain progresses throughout the sheet until an imperfection within the structure causes a catastrophic break. The resistance to tensile elongation is assumed to be elastic , at first, throughout the structure, followed by an overall plastic yield. However, linear image strain analysis (LISA) has demonstrated that the yield in tensile loading of paper is quite non-uniform throughout the structure, Traditional theories have failed to define the flaws that trigger catastrophic failure. It was assumed that a shive or perhaps a low basis weight area filled that role. Studies of the fracture mechanics of paper have typically utilized a well-defined flaw around which yield and failure could be examined . The flaw was a simple razor cut normal to the direction of tensile loading. Such testing is labeled mode I analysis. The included fla in the paper was always normal to the tensile loading direction, never at another orientation . However, shives or low basis weight zones are likely to be at random angular orientations in the sheet. The effects of angular flaws within the tensile test were examined. The strain energy density theory and experimental work demonstrate the change in crack propagation from mode I to mode IIas the initial flaw angle of crack propagation as a function of the initial flaw angle is predicted and experimentally demonstrated.

  • PDF

Marguerre shell type secant matrices for the postbuckling analysis of thin, shallow composite shells

  • Arul Jayachandran, S.;Kalyanaraman, V.;Narayanan, R.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.1
    • /
    • pp.41-58
    • /
    • 2004
  • The postbuckling behaviour of thin shells has fascinated researchers because the theoretical prediction and their experimental verification are often different. In reality, shell panels possess small imperfections and these can cause large reduction in static buckling strength. This is more relevant in thin laminated composite shells. To study the postbuckling behaviour of thin, imperfect laminated composite shells using finite elements, explicit incremental or secant matrices have been presented in this paper. These incremental matrices which are derived using Marguerre's shallow shell theory can be used in combination with any thin plate/shell finite element (Classical Laminated Plate Theory - CLPT) and can be easily extended to the First Order Shear deformation Theory (FOST). The advantage of the present formulation is that it involves no numerical approximation in forming total potential energy of the shell during large deformations as opposed to earlier approximate formulations published in the literature. The initial imperfection in shells could be modeled by simply adjusting the ordinate of the shell forms. The present formulation is very easy to implement in any existing finite element codes. The secant matrices presented in this paper are shown to be very accurate in tracing the postbuckling behaviour of thin isotropic and laminated composite shells with general initial imperfections.