• Title/Summary/Keyword: Initial equilibrium position

Search Result 27, Processing Time 0.035 seconds

Molecular-dynamic simulation on the equilibrium and dynamical properties of fluids in a nano-channel

  • Hoang, H.;Kang, S.;Suh, Y.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.208-214
    • /
    • 2008
  • The equilibrium molecular-dynamic simulations have been performed to estimate the properties of the three kinds of fluids (the Lennard-Jones fluid, water and aqueous sodium-chloride solution) confined between two plates that are separated by 1.086 nm; included in the equilibrium properties are the density distribution and the static structure, and the diffusivity in the dynamic property. Three kinds of fluids considered in this study are. The water molecules are modeled by using the SPC/E model and the ions by the charged Lennard-Jones particle model. To treat the water molecules, we combined the quaternion coordinates with Euler angles. We also proposed a plausible algorithm to assign the initial position and direction of molecules. The influence of polarization of water molecules as well as the presence of ions in the solution on the properties will be addressed in this study. In addition, we performed the non-equilibrium molecular-dynamic simulation to compute the flow velocity for the case with the gravitational force acting on molecules.

  • PDF

Molecular-dynamic simulation on the equilibrium and dynamical properties of fluids in a nano-channel

  • Hoang, H.;Kang, S.;Suh, Y.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.208-214
    • /
    • 2008
  • The equilibrium molecular-dynamic simulations have been performed to estimate the properties of the three kinds of fluids (the Lennard-Jones fluid, water and aqueous sodium-chloride solution) confined between two plates that are separated by 1.086 nm; included in the equilibrium properties are the density distribution and the static structure, and the diffusivity in the dynamic property. Three kinds of fluids considered in this study are. The water molecules are modeled by using the SPC/E model and the ions by the charged Lennard-Jones particle model. To treat the water molecules, we combined the quaternion coordinates with Euler angles. We also proposed a plausible algorithm to assign the initial position and direction of molecules. The influence of polarization of water molecules as well as the presence of ions in the solution on the properties will be addressed in this study. In addition, we performed the non-equilibrium molecular-dynamic simulation to compute the flow velocity for the case with the gravitational force acting on molecules.

  • PDF

A topological optimization method for flexible multi-body dynamic system using epsilon algorithm

  • Yang, Zhi-Jun;Chen, Xin;Kelly, Robert
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.475-487
    • /
    • 2011
  • In a flexible multi-body dynamic system the typical topological optimization method for structures cannot be directly applied, as the stiffness varies with position. In this paper, the topological optimization of the flexible multi-body dynamic system is converted into structural optimization using the equivalent static load method. First, the actual boundary conditions of the control system and the approximate stiffness curve of the mechanism are obtained from a flexible multi-body dynamical simulation. Second, the finite element models are built using the absolute nodal coordination for different positions according to the stiffness curve. For efficiency, the static reanalysis method is utilized to solve these finite element equilibrium equations. Specifically, the finite element equilibrium equations of key points in the stiffness curve are fully solved as the initial solution, and the following equilibrium equations are solved using a reanalysis method with an error controlled epsilon algorithm. In order to identify the efficiency of the elements, a non-dimensional measurement is introduced. Finally, an improved evolutional structural optimization (ESO) method is used to solve the optimization problem. The presented method is applied to the optimal design of a die bonder. The numerical results show that the presented method is practical and efficient when optimizing the design of the mechanism.

MOLECULAR-DYNAMIC SIMULATION ON THE STATICAL AND DYNAMICAL PROPERTIES OF FLUIDS IN A NANO-CHANNEL

  • Hoang, Hai;Kang, Sang-Mo;Suh, Yong-Kweon
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.24-34
    • /
    • 2009
  • The equilibrium molecular-dynamic simulations have been performed to estimate the properties of the three kinds of fluids confined between two plates that are separated by 1.086 nm; included in the statical properties are the density distribution and the static structure, and the autocorrelation velocity function in the dynamic property. Three kinds of fluids considered in this study are the Lennard-Jones fluid, water and aqueous sodium-chloride solution. The water molecules are modeled by using the SPC/E model and the ions by the charged Lennard-Jones particle model. To treat the water molecules, we combined the quaternion coordinates with Euler angles. We also proposed a plausible algorithm to assign the initial position and direction of molecules. The influence of polarization of water molecules as well as the presence of ions in the solution on the properties will be addressed in this study. In addition, we performed the non-equilibrium molecular-dynamic simulation to compute the flow velocity for the case with the gravitational force acting on molecules.

Shelf-life prediction of packaged cigarette subjected to different degrees of sealing (봉함도에 따른 포장담배의 저장수명 예측)

  • Keun-hoi Lee;young-hoh Kim;young-taek Lee;Kwang-soo Rhim;yong-tae Kim
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.12 no.2
    • /
    • pp.59-65
    • /
    • 1990
  • In order to predict the shelf-life of cigarettes packaged in typical flexible film under conditions of various temperature, relative humidity and sealing degree, a computer iterative technique was used. Although there were some significant differences at initial equilibrium relative humidity(55%), the experimental results agree fairly well with predictions following the student's t test($\alpha$=0.01) in most cases. Essentially, the higher the storage temperature, the shorter the shelf-life of the cigarette product. The bigger the differences from the initial equilibrium relative humidity, the shorter the storage period of the cigarette. Moisture transfer through the film at relatively high temperature gave higher confidence. The sealing degree, one of the storage parameters, appeared to be a major influencing factor to shelf-life. Slopes($\beta$) of the temp., sealing degree and %rh of the dependent variable to shelf life were 0.49, -0.39 and -0, 28 respectively, when analysed by multiple regression of SPSS software. Below 600m1/min sealing decree of the packed cigarette through the sealing Position at 30mmH20 differential pressure, the shelf-life could be increased by more than six months.

  • PDF

A Diffusion-based Model Theory of Passive-Targeted Drug Delivery in Solid Tumors (단단한 종양 안에 수동 조준된 약물의 전달에 관한 확산에 기초한 모델 이론)

  • Choi, Joon-Hyuck;Kang, Nam-Lyong;Choi, Sang-Don
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.161-166
    • /
    • 2007
  • A model theory of passive-targeted drug delivery in sphere-shaped solid tumors is introduced on the basis of Fick's law of diffusion, with appropriate boundary and initial conditions. For a uniform initial concentration inside the tumor, the concentration is obtained as a function of time and radial position. The concentration is shown to approach the equilibrium distribution as the time elapses, as is expected by the Gedanken Experiment. The time-evolution rate is found to be determined by the diffusion coefficient of the drug in the tissue, the size of the tumor, the volume of the drug-injected region, and the concentration gradient at the boundary.

  • PDF

A model for investigating vehicle-bridge interaction under high moving speed

  • Liu, Hanyun;Yu, Zhiwu;Guo, Wei;Han, Yan
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.627-635
    • /
    • 2021
  • The speed of rail vehicles become higher and higher over two decades, and China has unveiled a prototype high-speed train in October 2020 that has been able to reach 400 km/h. At such high speeds, wheel-rail force items that had previously been ignored in common computational model should be reevaluated and reconsidered. Aiming at this problem, a new model for investigating the vehicle-bridge interaction at high moving speed is proposed. Comparing with the common model, the new model was more accurate and applicable, because it additionally considers the second-order pseudo-inertia forces effect and its modeling equilibrium position was based on the initial deformed curve of bridge, which could include the influences of temperature, pre-camber, shrinkage and creep deformation, and pier uneven settlement, etc. Taking 5 km/h as the speed interval, the dynamic responses of the classical vehicle-bridge system in the speed range of 5 km/h to 400 km/h are studied. The results show that ignoring the second-order pseudo-inertia force will underestimate the dynamic response of vehicle-bridge system and make the high-speed railway bridge structure design unsafe.

A Calculation Method of the Ship's Posture Based on the Static Equilibrium for the Refloating Plan of the Stranded Ship (좌초선의 이초 계획 수립을 위한 정적 평형 기반의 자세 계산 방법)

  • Lee, Woo-yong;Ham, Seung-Ho;Ku, Namkug
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.55-63
    • /
    • 2022
  • A stranded ship means a ship which is stuck on a rock or a seabed, and cannot move by itself. The lightening plan is required to refloat the stranded ship. For this, we have to understand the forces and moments acting on the ship, which is composed of the gravity, buoyancy, and reaction force due to the touched area below the ship. This study defines those forces and moments, and proposed the calculation method to find the posture based on the static equilibrium. It is divided by two steps. In the first step, the magnitude and position of the reaction force are obtained based on the known information such as initial trim angle and draft of the ship. In the second step, the reaction force and the posture is calculated due to the three cases such as addition, reduction, and movement of the cargo. It is applied to three examples in order to calculate the reaction force, and the trim angle due to changes of the cargo. As a results, we successfully obtain the magnitudes and positions of forces acting on the stranded ship and to check the posture of the stranded ship.

Pulsation Dampener for Diaphragm Metering Pump (다이아프램 정량펌프의 맥동감쇄 장치)

  • 윤승원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1143-1147
    • /
    • 2004
  • A mechanical type pulsation dampener for the diaphragm metering pump has been developed. The pulsation pressure is an inevitable phenomenon for the positive displacement pump such as cam operated or solenoid operated metering pump. The pulsation pressure of the metering pump could be the noise source and would be harmful for the piping system which delivers hydraulic fluid. Developed pulsation dampener consists of three coil springs which have different spring constant and height each other. Depending on pressure magnitude of the piping system, total hydraulic pressure on damping diaphragm which compresses coil springs will be varied. Force equilibrium of the pulsation dampener will be set by manual by adjusting the compressed coil spring height. During the discharge stroke, pulsation dampener stores potential energy that is released as the pumping diaphragm back to an initial position during the suction stroke.

  • PDF

A Relative Nodal Displacement Method for Element Nonlinear Analysis (상대 절점 변위를 이용한 비선형 유한 요소 해석법)

  • Kim Wan Goo;Bae Dae sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.534-539
    • /
    • 2005
  • Nodal displacements are referred to the initial configuration in the total Lagrangian formulation and to the last converged configuration in the updated Lagrangian furmulation. This research proposes a relative nodal displacement method to represent the position and orientation for a node in truss structures. Since the proposed method measures the relative nodal displacements relative to its adjacent nodal reference frame, they are still small for a truss structure undergoing large deformations for the small size elements. As a consequence, element formulations developed under the small deformation assumption are still valid for structures undergoing large deformations, which significantly simplifies the equations of equilibrium. A structural system is represented by a graph to systematically develop the governing equations of equilibrium for general systems. A node and an element are represented by a node and an edge in graph representation, respectively. Closed loops are opened to form a spanning tree by cutting edges. Two computational sequences are defined in the graph representation. One is the forward path sequence that is used to recover the Cartesian nodal displacements from relative nodal displacement sand traverses a graph from the base node towards the terminal nodes. The other is the backward path sequence that is used to recover the nodal forces in the relative coordinate system from the known nodal forces in the absolute coordinate system and traverses from the terminal nodes towards the base node. One open loop and one closed loop structure undergoing large deformations are analyzed to demonstrate the efficiency and validity of the proposed method.