• Title/Summary/Keyword: Initial concentration

Search Result 3,428, Processing Time 0.032 seconds

Effects of Dietary Wild-Ginseng Adventitious Root Meal on Growth Performance, Blood Characteristics and Meat Quality in Growing-Finishing Pigs (산삼 부정근박 급여가 육성-비육돈의 생산성, 혈액성상 및 육질특성에 미치는 영향)

  • Jang, Hae-Dong;Hahn, Eu-Joo;Jeon, Won-Kyung;Paek, Kee-Yeoup;Kim, Hyo-Jin;Shin, Seung-Oh;Kim, In-Chul;Park, Jun-Chul;Kim, Jin-Dong;Kim, In-Ho
    • Journal of Animal Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.677-686
    • /
    • 2008
  • This study was conducted to evaluate the effects of dietary wild-ginseng adventitious root meal on growth performance, blood characteristics and meat quality characteristics in growing-finishing pigs. Ninety six pigs[(Landrace×Yorkshire)×Duroc] with average initial body weight of 68.29±0.31kg were used in 70d growth trial. Dietary treatments included 1) CON(Basal diet), 2) WGR1(Basal diet+0.5% wild- ginseng adventitious root meal), 3) WGR2(Basal diet+1.0% wild-ginseng adventitious root meal) and 4) WGR3(Basal diet+1.5% wild-ginseng adventitious root meal). The pigs were allotted into four dietary treatments with six replicate pens and four pigs per pen in a completely randomized design. For the whole period, final body weight and ADG were increased in CON treatment compared to WGR3 treatment(Linear effect, P=0.005). In blood characteristics, red blood cell(RBC) was significantly increased in CON and WGR2 treatments compared to WGR1 treatment (Quadratic effect, P=0.019). WGR2 treatment resulted in higher white blood cell(WBC) than CON and WGR1 treatments(Linear effect, P=0.041). WBC difference was significantly improved in WGR2 treatment compared to other treatments (Linear effect, P=0.042). Total protein was increased in WGR2 treatment compared to CON treatment (Quadratic effect, P=0.011). In cholesterol concentration of blood, total cholesterol, HDL-cholesterol, LDL-cholesterol and triglyceride were not significantly different among treatments. In meet quality, pH in WGR1 treatment was higher than WGR3 treatment(Quadratic effect=0.022). Water holding capacity(WHC) was significantly increased in WGR2 treatment compared to WGR3 treatment(Quadratic effect, P=0.050).

Changes on physio-chemical properties of oak sawdust during fermentation (참나무류 톱밥의 발효기간 중 물리화학적 특성 변화)

  • Koo, Chang-Duck;Lee, Sun-Jeong;Lee, Hwa-Yong;Park, Yong-Woo;Lee, Hee-Su;Kim, Je-Su
    • Journal of Mushroom
    • /
    • v.12 no.3
    • /
    • pp.209-215
    • /
    • 2014
  • Changes in physical and chemical properties of oak sawdust were investigated by depth and time for 46 days during the fermentation process of 33 tons of the sawdust for oak mushroom cultivation. The degrees of change in the properties of the sawdust differed depending on the depth and fermentation period. Most of the physical-chemical properties except temperature and pH gradually changed during the fermentation. The temperature change was highly sensitive to the environment at the surface sawdust to 20 cm depth, while it gradually increased to the maximum $58.9^{\circ}C$ at 40~100 cm depths in 12 days and slowly to the maximum at 150 cm depth in 24 days. The moisture content of the sawdust decreased gradually from 31% to 26.5~28.0% in 24 days. Of the chemical properties during the fermentation, pH generally rose from 5.2 to 5.6, but it decreased to 4.4~4.7 at 150 cm depth in 16 days. While the carbon content of the sawdust was 68~70% without significant change, nitrogen content increased from 0.22% to 0.25% and thus C/N ratio gradually lowered from 320 to 280. P content in the sawdust gradually increased from 0.005% to 0.022% for 46 days. Osmotic concentration of the hot water extract of the sawdust varied 41.5~44.2 mmol/kg without significant change by the depth and time. The starch particles within initial ray parenchyma cells of sawdust decreased and fungal hyphae formed on the surface of the sawdust granules and within xylem vessel cells in 35 days. The effect of the sawdust fermentation on oak mushroom cultivation needs continued research.

Variation Patterns in Concentration of Inorganic Nitrogen from Liquid Grass Fertilizer during Aerobic Incubation (항온 호기 배양 조건에서 잔디 예초물 액비로부터 무기화된 질소의 농도 변화)

  • Lee, Tae-Kyu;Park, Ji-Suk;Lee, Min-Jin;Kim, Jong-Sung;Ro, Hee-Myong;Kim, Sang-Jun;Jeon, Seung-Woo;Seo, Sang-Gug;Kim, Kil-Yong;Lee, Geon-Hyoung;Jeong, Byung-Gon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1120-1125
    • /
    • 2012
  • To assess fertilizer value of an quasi-aerobically fermented liquid clipped-grass fertilizer, aerobic incubation experiment using two texturally contrasting loam (L) and sandy loam (SL) soils was conducted for 60 days to investigate temporal variations in N mineralization pattern of the liquid fertilizer applied. To do so, the quasi-aerobically fermented liquid clipped-grass fertilizer was prepared, applied to each soil at a rate of 200 kg-N $ha^{-1}$ and aerobically $25^{\circ}C$ in the dark. During incubation, soil water content was adjusted to field moisture capacity (-33 kPa of soil matric potential) by adding distilled water as necessary to maintain their initial weights. At desired time of incubation (0, 1, 5, 10, 20, 40, and 60 days after incubation), soil was sampled and analyzed for inorganic nitrogen ($NH_4{^+}$-N and $NO_3{^-}$-N) concentrations, pH, EC, total carbon contents and total nitrogen contents. Concentrations of $NH_4{^+}$-N began to decrease right after incubation for L soils, and 10 days after incubation for SL soils, while those of $NO_3{^-}$-N began to increase onset of $NH_4{^+}$-N disappearance. The results of this study showed that quasi-aerobically fermented liquid clipped-grass fertilizer could serve as an alternative to chemical N fertilizer.

Degradation of Microcystin-LR, Taste and Odor, and Natural Organic Matter by UV-LED Based Advanced Oxidation Processes in Synthetic and Natural Water Source (UV-LED기반 고도산화공정을 이용한 수중 마이크로시스틴-LR, 이취미 물질, 자연유기물 분해)

  • Yang, Boram;Park, Jeong-Ann;Nam, Hye-Lim;Jung, Sung-Mok;Choi, Jae-Woo;Park, Hee-Deung;Lee, Sang-Hyup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.246-254
    • /
    • 2017
  • Microcystin-LR (MC-LR) is one of most abundant microcystins, and is derived from blue-green algae bloom. Advanced oxidation processes (AOPs) are effective process when high concentrations of MC-LR are released into a drinking water treatment system from surface water. In particular, UV-based AOPs such as UV, $UV/H_2O_2$, $UV/O_3$ and $UV/TiO_2$ have been studied for the removal of MC-LR. In this study, UV-LED was applied for the degradation of MC-LR because UV lamps have demonstrated some weaknesses, such as frequent replacements; that generate mercury waste and high heat loss. Degradation efficiencies of the MC-LR (initial conc. = $100{\mu}g/L$) were 30% and 95.9% using LED-L (280 nm, $0.024mW/cm^2$) and LED-H (280 nm, $2.18mW/cm^2$), respectively. Aromatic compounds of natural organic matter changed to aliphatic compounds under the LED-H irradiation by LC-OCD analysis. For application to raw water, the Nak-dong River was sampled during summer when blue-green algae were heavy bloom in 2016. The concentration of extracellular and total MC-LR, geosmin and 2-MIB slightly decreased by increasing the LED-L irradiation; however, the removal of MC-LR by UV-LED (${\lambda}=280nm$) was insufficient. Thus, advanced UV-LED technology or the addition of oxidants with UV-LED is required to obtain better degradation efficiency of MC-LR.

Evaluation of Design and Operation Parameters for a Spherical Sulfur Denitrification Reactor Treating High Strength Municipal Wastewater (고농도 도시하수 처리를 위한 입상황 탈질 반응조의 설계 및 운영인자 평가)

  • Kim, Yong-Hak;Chae, Kyu-Jung;Yim, Seong-Keun;Lee, Young-Man;Bae, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1087-1093
    • /
    • 2010
  • Autotrophic denitrification is known as an effective and economical alternative for heterotrophic denitrification using external carbon sources such as methanol. In this study, we evaluated design and operation parameters for a sulfur denitrification reactor (SDR) treating high strength nitrogen wastewater. The SDR was filled with spherical sulfur media in connected to a pilot-scale nutrient removal process (daily flow rate, $Q=18\;m^3/d$) using moving spongy media. Total nitrogen (TN) concentration of the final effluent was below the 7.0 mg TN/L because nitrate was additionally removed through autotrophic denitrificationin without adding alkalinity (initial alkalinity was $169.4{\pm}20.8\;mg$ $CaCO_3$/L). During the test period, 60~80% of nitrogen in the influent was removed even in low temperature (below $15^{\circ}C$). The alkalinity consumption for nitrate removal in SDR was $4.09{\pm}1.29$ g $CaCO_3/g$ ${NO_3}^-$-N, and the residual alkalinity of influent of SDR was higher than that of theoretical requirements for full conversion of nitrate. The consumption of sulfur was 943.8 g S/d and it was 2.4 times higher than theoretical value (400.1 g S/d) due to abrasion and loss of sulfur media in backwash, etc.

Estimation of Spatial Accumulation and transportation of Chl-$\alpha$ by the Numerical Modeling in Red Tide of Chinhae Bay (진해만 적조에 있어서 수치모델링에 의한 Chl-$\alpha$의 공간적 집적과 확산 평가)

  • Lee Dae-In
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • The summer distribution of $Cha-{alpha}$ and physical processes for simulating outbreak region of red tide were estimated by the Eco-Hydrodynamic model in Chinhae Bay. As a result of simulation of surface residual currents, the southward flow come in contact with the northward flow at the inlet and western part of bay in case of windlessness and below wind velocity 2 m/sec. As wind velocity increases, the velocity and direction of currents were fairly shifted. The predicted concentration of $Cha-{alpha}$ exceeded 20 mg/㎥ in Masan and Haengam Bays, and most regions were over 10 mg/㎥, which meant the possibility of red tide outbreak. From the results of the contributed physical processes to $Cha-{alpha}$, accumulation sites were distributed at the northern part of Kadok channel, around the Chilcheon island, the western part of Kajo island and some area of Chindong Bay. On the other hand, inner parts of the study area such as Masan Bay were estimated as the sites of strong algal activities. Masan and Haengam Bay are considered as the initial outbreak region of red tide by the modeling and observed data, and then red tide expanded to other areas such as physical accumulation region and western inner bay, as depending on environmental variation. The increase of wind velocity led to decrease of $Cha-{alpha}$ and enlargement of accumulation region. The variation of intensity of radiation and sunshine duration caused to rapidly fluctuation of $Cha-{alpha}$: however, it was not largely affected by the variation of pollutant loads from the land only.

  • PDF

Effect of Organic Acid on Value of VBN, TBARS, Color and Sensory Property of Pork Meat (유기산 처리가 돈육의 VBN, TBARS, 색깔, 관능적 특성에 미치는 영향)

  • Kang, S.N.;Jang, A.;Lee, S.O.;Min, J.S.;Lee, M.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.443-452
    • /
    • 2002
  • The objective of this study was to evaluate the effects of concentration(0, 0.5, 1, 1.5 and 2%)of lactic, citric and acetic acid on chemical and sensory characteristics of fresh pork loins. The pork loins were sprayed with organic acid by a hand sprayer for 15 sec at 30$^{\circ}C$, packaged under air and stored for 14 days at 4$^{\circ}C$ and then during the storage time analyzed for VBN, TBARS, color and sensory property. All treated loins showed lower(p<0.05) VBN and TBARS values than the control's. Two percents of organic acid was the most efficient than the rest of treatments(p<0.05). All of pork loins that were sprayed with organic acids had higher CIE L*value(p<0.05) during storage. However, on 14th day, L* value of meat treated with lactic and acetic acid in 1.5 and 2% concentrations was not different from that of initial fresh loins(0 days). According to the results of sensory test, lactic acid, citric acid and acetic acid did not affected bloody and off-flavor of the meat for one day at 4$^{\circ}C$. While the acetic acid spraying resulted in the strong sour flavor of meat after one day.

Effects of Dietary Lactobacillus brevis Supplementation on Growth Performance, Dry Matter and Nitrogen Digestibilities, Blood Cell Counts and Fecal Odor Emission Compounds in Growing Pigs (육성돈사료에 Lactobacillus brevis의 첨가가 성산성, 건물과 질소 소화율, 혈구수 및 분 내 악취 발생 물질에 미치는 영향)

  • 진영걸;민병준;조진호;김해진;유종상;김인호
    • Journal of Animal Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.503-512
    • /
    • 2006
  • This study was conducted to investigate the effects of dietary Lactobacillus brevis (3.4×108 CFU/g) supplementation on growth performance, DM and N digestibilities, blood cell counts and fecal odor emission compounds in growing pigs. Ninety six crossbred [(Landrace×Yorkshire)×Duroc] pigs with an initial BW of 24.60±1.28kg were used for 42-d feeding trial according to a completely randomized design. Three corn- soybean meal based dietary treatments included: 1) CON (basal diet); 2) LB1 (basal diet + Lactobacillus brevis 0.2%) and 3) LB2 (basal diet+Lactobacillus brevis 0.4%). There were three dietary treatments with eight replicate pens per treatment and four pigs per pen. Through the entire experimental period, ADG, ADFI and gain/feed had no significant differences among treatments(P>0.05). Nitrogen digestibility was increased in LB1 and LB2 treatments compared to CON treatment (linear effect, P<0.05), however, DM digestibility had no significant difference among all the treatments (P>0.05). The WBC, RBC and lymphocyte concentrations in whole blood were not affected by treatments (P>0.05). Fecal NH3N and H2S concentrations were significant decreased in LB2 treatment compared to CON treatment (linear effect, P<0.05). Fecal VFA (acetic acid and propionic acid) concentration was also reduced in LB2 treatment compared to CON treatment (linear effect, P<0.05). In conclusion, Lactobacillus brevis (3.4×108 CFU/g) supplementation at the level of 0.4% can improve nitrogen digestibility and decrease the concentrations of fecal odor emission compounds in growing pigs.

Effect of Activated Carbon, Orpar or Zeolite on Leaching Loss of Fenitrothion, Triadimefon and Diniconazole in Model Green of Golf Course (골프장 모형그린에서 활성탄, Orpar또는 Zeolite의 처리가 Fenitrothion, Triadimefon, Diniconazole의 용탈에 미치는 영향)

  • Oh, Sang-Sil;Koh, Yong-Ku;Chung, Jong-Bae;Hyun, Hae-Nam
    • Applied Biological Chemistry
    • /
    • v.44 no.2
    • /
    • pp.97-102
    • /
    • 2001
  • Cheju island depends on a hydrogeologically vulnerable aquifer system as its principle source of drinking water. Most of golf courses are located in the area which is important for the ground water recharge, and pesticides are applied to golf courses often at relatively high rates. Therefore, turf pesticides in golf course should be applied without adversely impacting ground water. In this experiment, downward movement of pesticides was monitored in model greens of golf course, where different adsorbents were layered in 3-cm thickness at 35-cm depth, and effect of the adsorption layer on the leaching loss of pesticides was investigated. Major leachings were observed in the periods of heavy rain and very limited leaching was observed under artificial irrigation. Fenitrothion and triadimefon, which have relatively short persistence and high adsorption coefficient, were found in the leachate in low concentrations only at the first rainfall event, around 20 days after the pesticide application. However, diniconazole, which has a relatively long half-life (97 days), was detected in the leachate during the whole period of experiment and concentration was much higher than those of the other pesticides. Maximum leachate concentrations were 1.9, 10.3, and 84.5 ${\mu}l^{-1}$ for fenitrothion, triadimefon, and diniconazole, respectively. Therefore, in golf course green which allows rapid water percolation and has extremely low adsorption capacity, persistence in soil could be more important factor in determination of leaching potential of pesticides. Total quantity of pesticides leached from the model green was <0.2% for fenitrothion and triadimefon and 1.8% for diniconazole. Adsorption layers significantly reduced pesticide leaching, and active carbon and Orpar were more effective than zeolite. In the model green having adsorption layer of active carbon or Orpar, leaching loss of pesticides was reduced below 0.01% of the initial application.

  • PDF

HPLC-MS/MS Detection and Sonodegradation of Bisphenol A in Water (HPLC-MS/MS를 이용한 Bisphenol A 분석 및 초음파에 의한 분해 특성 조사)

  • Park, Jong-Sung;Yoon, Yeo-Min;Her, Nam-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.639-648
    • /
    • 2010
  • The optimal conditions for the analysis of BPA by HPLC-MS/MS was investigated and the ultrasound degradation capacity of the BPA, with the goal to establish the proper directions for analyzing infinitesimal quantities of BPA by HPLC-MS/MS was examined. The MDL and LOQ of BPA analyzed by HPLC-MS/MS were measured 0.13 nM and 1.3 nM respectively, its sensitivity about 620 and 32 times greater than HPLC-UV (MDL: 81.1 nM, LOQ: 811 nM) and FLD (MDL: 4.6 nM, LOQ: 46 nM). In other words, the new method enables the analysis of BPA with the accuracy up to one 1,180th of the amount specified in U.S. EPA guideline for drinking water. Degradation rate of BPA by ultrasound measured over 95% under 580 kHz and 1000 kHz frequency within 30 minutes of treatment, whereas the rate showed some decrease at 28 kHz frequency. At 580 kHz of ultrasound has proven to be the most effective among others at degradation rate and $k_1$ value, so we concluded that this frequency of ultrasound creates hospitable condition for the combined process of degradation by pyrolysis and oxidization. With the addition of 0.01 mM of $CCl_4$, BPA with the initial concentration of 1 ${\mu}M$ was degraded by more than 98% within 30 minutes, the $k_1$ value measured 5 minutes and 30 minutes into the experiment both showed increases by 1.4 and 1.1 times, respectively, compared with BPA without $CCl_4$. It is also found that the main degradation mechanism of BPA by ultrasound is oxidization process by OH radical, based on the fact that the addition of 10 mM of t-BuOH decreased the rate of BPA degradation by around 60%. However, 33% of BPA degradation rate obtained with the addition of t-BuOH implies further degradation done by pyrolysis or other sorts of radical beside OH radical.