• Title/Summary/Keyword: Initial Value

Search Result 3,449, Processing Time 0.029 seconds

Yield and Chemical Composition of Cassava Foliage and Tuber Yield as Influenced by Harvesting Height and Cutting Interval

  • Khang, Duong Nguyen;Wiktorsson, Hans;Preston, Thomas R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.1029-1035
    • /
    • 2005
  • A 3${\times}$4 factorial field experiment with a complete randomised split-plot design with four replicates was conducted from June 2002 to March 2003 at the experimental farm of the Nong Lam University, Ho Chi Minh City, Vietnam, to determine effects of different harvesting heights (10, 30 and 50 cm above the ground) and cutting intervals (45, 60, 90 and 285 days) on yield of foliage and tubers, and chemical composition of the foliage. Cassava of the variety KM 94 grown in plots of 5 m${\times}$10 m at a planting distance of 30 cm${\times}$50 cm was hand-harvested according to respective treatments, starting 105 days after planting. Foliage from the control treatment (285 days) and all tubers were only harvested at the final harvest 285 days after planting. Dry matter and crude protein foliage yields increased in all treatments compared to the control. Mean foliage dry matter (DM) and crude protein (CP) yields were 4.57, 3.53, 2.49, and 0.64 tonnes DM $ha^{-1}$ and 939, 684, 495 and 123 kg CP $ha^{-1}$ with 45, 60, 90 and 285 day cutting intervals, respectively. At harvesting heights of 10, 30 and 50 cm the DM yields were 4.27, 3.67 and 2.65 tonnes $ha^{-1}$ and the CP yields were 810, 745 and 564 kg $ha^{-1}$, respectively. The leaf DM proportion was high, ranging from 47 to 65%. The proportion of leaf and petiole increased and the stem decreased with increasing harvesting heights and decreasing cutting intervals. Crude protein content in cassava foliage ranged from 17.7 to 22.6% and was affected by harvesting height and cutting interval. The ADF and NDF contents of foliage varied between 22.6 and 30.2%, and 34.2 and 41.2% of DM, respectively. The fresh tuber yield in the control treatment was 34.5 tonnes $ha^{-1}$. Cutting interval and harvesting height had significant negative effects on tuber yield. The most extreme effect was for the frequent foliage harvesting at 10 cm harvesting height, which reduced the tuber yield by 72%, while the 90 day cutting intervals and 50 cm harvesting height only reduced the yield by 7%. The mean fresh tuber yield decreased by 56, 45 and 27% in total when the foliage was harvested at 45, 60 and 90 day cutting intervals, respectively. It is concluded that the clear effects on quantity and quality of foliage and the effect on tuber yield allow alternative foliage harvesting principles depending on the need of fodder for animals, value of tubers and harvesting cost. An initial foliage harvest 105 days after planting and later harvests with 90 days intervals at 50 cm harvesting height increased the foliage DM and CP yield threefold, but showed only marginal negative effect on tuber yield.

Health risk assessment for radon of groundwater in Korea

  • Kim, Yeshin;Kim, Jinyong;Park, Hoasung;Park, Soungeun;Dongchun Shin
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.170-170
    • /
    • 2003
  • An initial study has been conducted with Korea Institute of Geoscience and Mineral resources and National Institute of Environment Research to evaluate the distribution of radon levels and their risk levels of groundwater in Korea. Probability distribution of 616 samples was log-normal one with 1,867pCi/L as arithmetic value, 920pCi/L as median and 40,010pCi/L as maximum during iou. years(1999-2002). In addition, 10% of total samples are in excess of 4,000pCi/L, 20% in excess of 2,700pCi/L, and 30% in excess of 1,700pCi/L, and 15 samples exceeds 10,000pCi/L. Total samples are grouped into 10 areas and 5 rocks unit, and difference of concentrations among areas and rocks are statistically significant(respectively, p<0.0001). The highest area is Daejeon located in ogcheon metamorphic rocks and granitic rocks, and most of all sites with high concentration sites are located in granitic rocks. The lowest area is Jeju located in volcanic rocks. We have estimated excess cancer risks of radon based on these data. To estimate risks, first of all, use patterns of groundwater are categorized with 6 groups: for drinking, household, farming, washing cars, raising stock, and others. We considered risk only for drinking water and household water because radon is rapidly dispersed before it of other use reach human respiratory organs. We select 565 samples for risk analysis, and applied unit risk which is 6.6210-7 per pCi/L to be recommended by NAS committee. Unit risk was derived from considering radon ingestion and radon inhalation from water use. When estimating risk, we analyzed PDF of concentration and represented risk as 50 and 95 percentile values to consider uncertainty with Monte-Carlo simulation. It results in 10-4 level of their excess cancer risk and in 10-2 level in some areas with high concentration of radon. It must be monitor periodically and take adequate actions in these risky sites. We recommend that it needs to take more survey and finally set guideline for radon regulation in groundwater.

  • PDF

Feasibility Study on Removal of Total Suspended Solid in Wastewater with Compressed Media Filter (압축성 여재 여과를 이용한 하수의 고형물질 제거 타당성 연구)

  • Kim, Yeseul;Jung, Chanil;Oh, Jeill;Yoon, Yeomin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.84-95
    • /
    • 2014
  • Recently, as a variety of techniques of CMF (Compressed media filter) that has advantages of high porosity and compressibility have been developed in the U.S. and Japan. Therefore, the interest of intensive wastewater treatment using CMF has grown. This study examined the feasibility of CMF with varying sewage water quality to determine the optimum operating conditions. A preliminary tracer test that investigated the filtering process under various compression and flow rate conditions was performed. In a high compression condition, different porosities were applied to each depth of the column. Therefore, a distinct difference between a theoretical value and results of tracer test was observed. For the TSS (Total suspended solid) removal and particle size distribution of CMF for pre-treatment water under the various compression conditions, the compression ratio of 30 percent as the optimal condition showed greater than 70% removal efficiency. In addition, the compression ratio of >15% was required to remove small-sized particles. Also, an additional process such as coagulation is necessary to increase the removal efficiency for < $10{\mu}m$ particles, since these small particles significantly influence the effluent concentration. Modeling results showed that as the compression rate was increased, TSS removal efficiency in accordance with each particle size in the initial filtration was noticeably observed. The modeling results according to the depth of column targeting $10{\mu}m$ particles having the largest percentage in particle size distribution showed that 150-300 mm in filter media layer was the most active with respect to the filtering.

Current Generation from Microbial Fuel Cell Using Stainless Steel Wire as Anode Electrode (스텐철사를 전극으로 이용하는 미생물연료전지의 전류 발생)

  • Jang, Jae Kyung;Kim, Kyung Min;Byun, SungAh;Ryou, Young Sun;Chang, In Seop;Kang, Young Koo;Kim, Young Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.753-757
    • /
    • 2014
  • Anode electrode in a microbial fuel cell (MFC) should transfer the receiving electron as well as provide large surface area that can be immobilized microorganisms. Microorganisms' population is one of important factors to improve the current generation and to treat the livestock wastewater by biological treatment. These studies were attempted to investigate if stainless-steel wire skein (SSWS) could be used as anode electrode replacement a graphite felt electrode in microbial fuel cell. For these studies, pretreated livestock wastewater was used diluted to 500 mg/L as COD before use. At this time, the current showed a little difference of about 5% when using each of a SSW and graphite felt (control). There was no significant difference in the current value. The organic removal rate in the microbial fuel cells used graphite felt and SSWS was 82.4% and 88.3%, respectively. The COD removal in the MFC used the SSWS was higher than that of graphite felt. Ammonium nitrogen was showed similar trend in two case all. These results about current generation and organic matter reduction seem possible that SSWS was used to anode electrode. When SSWS is used, the initial investment for system construction is expected to be able to reduce by approximately 1/50.

Change of fluorescence in ambers according to artificial aging (인공열화에 따른 호박(amber)의 형광특성 변화)

  • Park, Jong-Seo;Lim, Yu-Jin
    • Analytical Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.197-206
    • /
    • 2012
  • Ambers are composed of polymer molecules which contain aromatic moieties such as benzene, naphthalene, phenanthrene and anthracene. They emit fluorescence when irradiated with ultraviolet light, which was used for confirming an amber. The fluorescence of amber, however, tends to decrease as the surface of amber is weathered with light, heat, oxygen for a long time. In this study, the reliability of confirming amber with its fluorescence by measuring the changes of fluorescence after artificial aging. Aging factors were UV light (${\lambda}$=340 nm), oxygen with heat (100%, $90^{\circ}C$) and heat ($90^{\circ}C$) and aging time was for 5, 15, 30 and 60 days, respectively. In the excitation and emission spectra of amber, the intensity decreased and the maximal wavelength was shifted to longer wavelength with artificial aging time. Especially, there was a drastic decrease in the intensity of spectra to 1.7% of initial value after 60 days aging under oxygen with heat. Only in Colombian amber there showed an increase of fluorescence intensity for a certain aging time, which could be explained by the production of aromatic ring in the presence of light and heat. Conclusively, the fluorescence can be lessened by the natural weathering with light, heat and oxygen and it is not accurate to recognize amber just with UV irradiation method.

Respiration of Fresh Sweet Persimmon and Its Use for Packaging Film Selection (온도조건에 따른 단감의 호흡특성 및 포장재 조건 선정)

  • Kim, Hwan-Ki;Kim, Hae-Jin;An, Duck-Soon;Ahn, Gwang-Hwan;Lee, Dong-Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.15 no.2
    • /
    • pp.43-47
    • /
    • 2009
  • Respiration and quality of persimmon fruits were monitored through the storage at 0, 5, 15 and $25^{\circ}C$. Respiration rate data at different temperatures were used for determining the $O_2$ and $CO_2$ permeabilities required to maintain the optimal package atmosphere (1~3% $O_2$, 4~7% $CO_2$). The estimated gas permeabilities were then compared to those of available plastic films for examining their potential application at various temperature conditions. $O_2$ consumption and $CO_2$ production were at similar order and leveled at stable value after initial time span with higher rates measured at higher temperatures. Major quality indexes during storage were observed to be ascorbic acid content change and firmness destruction with the most significant changes at $25^{\circ}C$ Higher $O_2$ and $CO_2$ permeabilites were required at higher temperatures, and common plastic films were shown to be unable to satisfy those requirements. Films or devices of high permeation property such as silicone rubber or microporous film may be combined to increase the permeation properties satisfying the required high gas permeabilities.

  • PDF

An Application of Solenoid Eddy Current Sensor for Nondestructively Inspecting Deterioration of Overhead Transmission Lines due to Forest Fires (산불에 의한 가공송전선의 열화특성을 비파괴적으로 검출하기 위한 솔레노이드 와류센서의 응용)

  • Kim, Sung-Duck;Kim, Young-Dal;Jeong, Dong-Hwa
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.404-415
    • /
    • 2000
  • This paper describes several performances and nondestructive inspection for deterioration due to forest fires in overhead transmission lines. After discussing corrosion mechanism such as atmospheric and galvanic corrosion for aged ACSR conductors and its detection for them are presented. Through impedance analysis of a solenoid coil, it is shown that the eddy current sensor may be available to inspect severe fault or local corrosion. As the solenoid coil changes its impedance when the test conductor is inserted into the coil, it can be possible to measure deterioration degree caused by forest fires. Tensile strength, extension rate and sensor impedance are tested for some samples degraded by artificial fire. As increasing blazed period to some extent, the strength of aluminum strand begins to be reduced remarkably, while galvanized steel strand holds the similar strength to the initial value, despite of appearing a little loss of zinc layer. In general, it is shown that the sensor impedance would be increased while the tension load of conductor is reduced and the extension rate is contrarily increased. Therefore, the sensor output could exhibit the changes of mechanical performances, and would be used to detect such deterioration caused by forest fire in ACSR conductors built on the ridge of mountains. Finally, it was verified that the solenoid coil could be applicable to obtain any crucial inform for serious deterioration due to forest fires.

  • PDF

Development of Simple Prediction Method for Injury Severity and Amount of Traumatic Hemorrhage via Analysis of the Correlation between Site of Pelvic Bone Fracture and Amount of Transfusion: Pelvic Bleeding Score (골반골절 환자의 골절위치와 출혈량간의 상관관계 분석을 통한 대량수혈 필요에 대한 간단한 예측도구 개발: 골반골 출혈 지수)

  • Lee, Sang Sik;Bae, Byung Kwan;Han, Sang Kyoon;Park, Sung Wook;Ryu, Ji Ho;Jeong, Jin Woo;Yeom, Seok Ran
    • Journal of Trauma and Injury
    • /
    • v.25 no.4
    • /
    • pp.139-144
    • /
    • 2012
  • Purpose: Hypovolemic shock is the leading cause of death in multiple trauma patients with pelvic bone fracures. The purpose of this study was to develop a simple prediction method for injury severity and amount of hemorrhage via an analysis of the correlation between the site of pelvic bone fracture and the amount of transfusion and to verify the usefulness of the such a simple scoring system. Methods: We analyzed retrospectively the medical records and radiologic examination of 102 patients who had been diagnosed as having a pelvic bone fracture and who had visited the Emergency Department between January 2007 and December 2011. Fracture sites in the pelvis were confirmed and re-classified anatomically as pubis, ilium or sacrum. A multiple linear regression analysis was performed on the amount of transfusion, and a simplified scoring system was developed. The predictive value of the amount of transfusion for the scoring system as verified by using the receiver operating characteristics (ROC). The area under the curve of the ROC was compared with the injury severity score (ISS). Results: From among the 102 patients, 97 patients (M:F=68:29, mean $age=46.7{\pm}16.6years$) were enrolled for analysis. The average ISS of the patients was $16.2{\pm}7.9$, and the average amount of packed RBC transfusion for 24 hr was $3.9{\pm}4.6units$. The regression equation resulting from the multiple linear regression analysis was 'packed RBC units=1.40${\times}$(sacrum fracture)+1.72${\times}$(pubis fracture)+1.67${\times}$(ilium fracture)+0.36' and was found to be suitable (p=0.005). We simplified the regression equation to 'Pelvic Bleeding Score=sacrum+pubis+ilium.' Each fractured site was scored as 0(no fracture) point, 1(right or left) point, or 2(both) points. Sacrum had only 0 or 1 point. The score ranged from 0 to 5. The area under the curve (AUC) of the ROC was 0.718 (95% CI: 0.588-0.848, p=0.009). For an upper Pelvis Bleeding Score of 3 points, the sensitivity of the prediction for a massive transfusion was 71.4%, and the specificity was 69.9%. Conclusion: We developed a simplified scoring system for the anatomical fracture sites in the pelvis to predict the requirement for a transfusion (Pelvis Bleeding Score (PBS)). The PBS, compared with the ISS, is considered a useful predictor of the need for a transfusion during initial management.

Calculation of Pump Light Power in Wideband Optical Phase Conjugator with Highly-Nonlinear Dispersion Shifted fiber (HNL-DSF를 이용한 광대역 광 위상 공액기의 펌프 광 전력 계산)

  • 이성렬;이하철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5A
    • /
    • pp.473-483
    • /
    • 2004
  • In this paper, we numerically investigated the optimum pump light power best compensating for pulse distortion due to both chromatic dispersion and self phase modulation (SPM) as a function of channel input power in 8 channel ${\times}$ 40 Gbps wavelength division multiplexing (WDM systems. Also we investigated the allowable maximum channel input power dependence on modulation format and fiber dispersion coefficient in the various pump light power of OPC. The considered WDM transmission system is based on path-averaged intensity approximation (PAIA) mid-span spectral inversion (MSSI) compensation method, which has highly-nonlinear dispersion shifted fiber (HNL-SDF) as nonlinear medium of optical phase conjugator (OPC) in the mid-way of total transmission line. We confirmed that optimal pump light power of HNL-DSF OPC depend on modulation format, initial channel input power, total transmission length and fiber dispersion. But optimal pump light power of HNL-DSF OPC must be selected to make power conversion ratio to almost unity. And we confirmed that, if we allow a 1 dB eye opening penalty (EOP), the tolerable maximum channel input power is increased by using RZ than NRZ as modulation format when pump light power of HNL-DSF OPC is not optimal value but another values.

Characteristics of Membrane Filtration as a Post Treatment to Anaerobic Digestion (혐기성 소화의 후처리로서 분리막의 여과특성 연구)

  • Choo, Kwang-Ho;Lee, Chung-Hak;Pek, Un-Hwa;Koh, Ui-Chan;Kim, Sang-Won;Koh, Jong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.730-738
    • /
    • 1992
  • Filtration characteristics according to membrane materials were studied In the ultrafiltration of anaerobic digestion broth as a post treatment method. A series of resistances for different membranes were quantitatively assessed on the basis of the resistance-in-series model. Flux behavior observed with the digestion broth was irrelevant to initial water permeabilities of each membrane. The fluoro polymer membrane showed the most significant improvement of flux with increase of cross-flow velocity, which suggests that the cake layer formed on this membrane is more weakly attached to the membrane surface than those on the other membranes. Flux reduction during longtime running was attrib-used to the polarization layer resistance ($R_p$) as well as the fouling layer resistance($R_f$). Continuous increase of $R_p$ may reflect the variation in the characteristics of cake layers, which could result from size, shape, and structure changes due to lysis and growth of biomass. Hydrophilic cellulosic membrane had a much lower fouling tendency than hydrophobic polysulfone membrane. The depressurization method induced a small increase in flux of $5-10L/m^2/h$. During washing and cleaning, filtrability of each membrane was rapidly recovered within 15 minutes until a stationary value was reached.

  • PDF