• Title/Summary/Keyword: Initial Strain Method

Search Result 320, Processing Time 0.027 seconds

Thermal postbuckling and vibration analyses of functionally graded plates (경사기능판의 열적 후좌굴 및 진동해석)

  • Park Jae-Sang;Kim Ji-Hwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.279-283
    • /
    • 2004
  • Thermal postbuckling and vibration analyses of functionally graded plates (FG plates) are performed. The nonlinear finite element equation based on the first-order shear deformation plate theory is formulated for the FG plate. The von Karman strain-displacement relation is used to account for the thermal large deflection. The incremental method considering the effect of the initial deflection and the initial stress is adopted for temperature-dependent material properties of functionally graded materials. The numerical result shows characteristics of the thermal postbuckling and vibration of FG plates in the pre- and post- buckled regions.

  • PDF

Analysis of the Residual Stresses and Fatigue Strenth in Aluminum Alloy Weldments (AI 합금 용접부의 잔류응력 및 피로강도 해석)

  • 차용훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.177-182
    • /
    • 1996
  • The objective of this thesis is to investigate the influence of welding residual stresses on the fatigue growth behavior of welding residual stresses on the fatigue growth behavior of cracks located transverse to the weld bead. For this purpose, G.T.A. (Gas Tungsten Arc) welding was performed on the Al. Alloy 1100-0 plate and the same initial crack is made on HAZ(Heat Affected Zone), weld metal and base metal respectively. C.T.(Compact Tension) specimens were used as experimental material. Initial welding residual stresses were measured by using strain gage sectioning method. All specimens were tested under constant amplitude load with stress ratio R=0.1

  • PDF

Production of HCN, Weed Control Substance, by Pseudomonas koreensis and its Plant Growth-Promoting and Termiticidal Activities (Pseudomonas koreensis에 의한 잡초제어활성물질인 HCN 생성과 이 균주의 식물성장 촉진 및 흰개미 살충 활성)

  • Yoo, Ji-Yeon;Jang, Eun-Jin;Park, Soo-Yeun;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.27 no.9
    • /
    • pp.771-780
    • /
    • 2018
  • To develope a microbial weed control agent, HCN-producing bacteria were isolated, and their characteristics were investigated. A selected strain of WA15 was identified as Pseudomonas koreensis by morphological, cultural, biochemical and 16S rRNA gene analyses. The conditions for HCN production was investigated by a One-Variable-at-a-Time (OVT) method. The optimal HCN production conditions were tryptone 1%, glycine 0.06%, NaCl 1%, and an initial pH and temperature of 5.0 and $30^{\circ}C$, respectively. The major component for HCN production was glycine. Under optimal conditions, HCN production was about 3 times higher than that of the basal medium. The WA15 strain had physiological activities, such as indoleacetic acid that was associated with the elongation of plant roots and siderophore and ammonification inhibiting fungal growth, and produced hydrolytic enzymes, such as cellulase, pectinase and lipase. The strain was able to inhibit the growth of phytopathogenic fungi, such as Rhizoctonia solani, Botrytis cinerea and Fusarium oxysporum, by the synergistic action of volatile HCN and diffusible antimicrobial compounds. A microscopic observation of R. solani that was teated with the WA15 strain showed morphological abnormalities of fungal mycelia, which could explain the role of the antimicrobial metabolites that were produced by the WA15 strain. The volatile HCN produced by the WA15 strain was also found to have insecticidal activity against termites. Our results indicate that Pseudomonas koreensis WA15 can be applied as a microbial agent for weed control and also as a termite repellent. Furthermore, it could be applied as a microbial termiticidal agent to replace synthetic insecticides.

An Eulerian Finite Element Method for the Steady State Rolling/Extrusion of Sintered Powder Metals (소결분말재 정상상태 압연/압출공정의 오일러리안 유한요소해석)

  • ;;左野 利男
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.20-28
    • /
    • 1996
  • An Eulerian finite element method for the analysis of steady state rolling/extrusion of sintered powder metals is presented. Initial guess of the porosity distribution in an Eulerian mesh is obtained from the velocity and scaled pressure field computed by the Consistent Penalty finite element formulations-the standard one and the consistent penalty type one-are invoked for the analysis of strain hardening, dilatant viscoplastic deformation of porous metals. Comparisons of the predicted distributions of porosity to those by a Lagrangian finite element method and by experiments reported in the articles prove the effectiveness and validity of the proposed method.

  • PDF

Simple solutions of an opening in elastic-brittle plastic rock mass by total strain and incremental approaches

  • Park, Kyungho
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.585-600
    • /
    • 2017
  • This study deals with simple solutions for a spherical or circular opening excavated in elastic-brittle plastic rock mass compatible with a linear Mohr-Coulomb (M-C) or a nonlinear Hoek-Brown (H-B) yield criterion. Based on total strain approach, the closed-form solutions of stresses and displacement are derived simultaneously for circular and spherical openings using original H-B and M-C yield criteria. Two simple numerical procedures are proposed for the solution of generalized H-B and M-C yield criteria. Based on incremental approach, the similarity solution is derived for circular and spherical openings using generalized H-B and M-C yield criteria. The classical Runge-Kutta method is used to integrate the first-order ordinary differential equations. Using three data sets for M-C and H-B models, the results of the radial displacements, the spreading of the plastic radius with decreasing pressure, and the radial and circumferential stresses in the plastic region are compared. Excellent agreement among the solutions is obtained for all cases of spherical and circular openings. The importance of the use of proper initial values in the similarity solution is discussed.

Compressive performances of concrete filled Square CFRP-Steel Tubes (S-CFRP-CFST)

  • Wang, Qingli;Shao, Yongbo
    • Steel and Composite Structures
    • /
    • v.16 no.5
    • /
    • pp.455-480
    • /
    • 2014
  • Sixteen concrete filled square CFRP-steel tubular (S-CFRP-CFST) stub columns under axial compression were experimentally investigated. The experimental results showed that the failure mode of the specimens is strength loss of the materials, and the confined concrete has good plasticity due to confinement of the CFRP-steel composite tube. The steel tube and CFRP can work concurrently. The load versus longitudinal strain curves of the specimens can be divided into 3 stages, i.e., elastic stage, elasto-plastic stage and softening stage. Analysis based on finite element method showed that the longitudinal stress of the steel tube keeps almost constant along axial direction, and the transverse stress at the corner of the concrete is the maximum. The confinement effect of the outer tube to the concrete is mainly focused on the corner. The confinements along the side of the cross-section and the height of the specimen are both non-uniform. The adhesive strength has little effect both on the load versus longitudinal strain curves and on the confinement force versus longitudinal strain curves. With the increasing of the initial stress in the steel tube, the load carrying capacity, the stiffness and the peak value of the average confinement force are all reduced. Equation for calculating the load carrying capacity of the composite stub columns is presented, and the estimated results agree well with the experimental results.

The Influence of Temperature on Low Cycle Fatigue Behavior of Prior Cold Worked 316L Stainless Steel (I) - Monotonic and Cyclic Behavior - (냉간 가공된 316L 스테인리스강의 저주기 피로 거동에 미치는 온도의 영향 (I) - 인장 및 반복 거동 -)

  • Hong, Seong-Gu;Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.333-342
    • /
    • 2004
  • Tensile and low cycle fatigue (LCF) tests on prior cold worked 316L stainless steel were carried out at various temperatures from room temperature to 650$^{\circ}C$. At all test temperatures, cold worked material showed the tendency of higher strength and lower ductility compared with those of solution treated material. The embrittlement of material occurred in the temperature region from 300$^{\circ}C$ to 600$^{\circ}C$ due to dynamic strain aging. Following initial cyclic hardening for a few cycles, cycling softening was observed to dominate until failure occurred during LCF deformation, and the cyclic softening behavior strongly depended on temperature and strain amplitude. Non-Masing behavior was observed at all test temperatures and hysteresis energy curve method was employed to describe the stress-strain hysteresis loops at half$.$life. The prediction shows a good agreement with the experimental results.

A Experimental study for obtaining material function of very soft clay (초연약 점토의 구성관계 산정에 관한 실험적 연구)

  • Lee, Song;Kang, Myung-Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.491-498
    • /
    • 2002
  • Dredged and reclaimed soft clays form slurry state which is very high water content and very low shear strength, experience large self-weight consolidation, nonlinear compressibility and permeability phenomenon would take place. In this case, a material functions which represent variety effective stress-void ratio-permeability relation (especially very low effective stress), are should be determined to predict nonlinear finite strain consolidation phenomenon forehand In this study, large slurry consolidometer with a 380mm diameter and a 1400mm height which is able to consolidation and permeability test, was developed to determine material function of very soft clay with a 500% initial water content clay, self-weight consolidation and low stress level consolidation (1Kpa, 3Kpa, 6Kpa, 12Kpa) was conducted and after each consolidation step permeability test also conducted. after final consolidation step, a constant rate of strain consolidation was conducted with undisturbed sample obtained from the large consolidometer. On the above result, material function was determined and laboratory test was modelled to evaluate its validity, numerical analysis on th field was compared to other method.

  • PDF

Effect of Impurity Reduction on Mechanical Properties of Fe29.5Ti70.5 Alloy Prepared by Pretreated Ti Scraps

  • Suhwan Yoo;Jung-Min Oh;Jaeyeol Yang;Jaesik Yoon;Jae-Won Lim
    • Archives of Metallurgy and Materials
    • /
    • v.66 no.3
    • /
    • pp.729-733
    • /
    • 2021
  • Ferrotitanium can be produced as a method of recycling Ti scraps. The eutectic composition of ferrotitanium, Fe29.5Ti70.5, can be obtained as a nanocrystalline phase due to relatively low melting point. Fe29.5Ti70.5 in which FeTi and β-Ti form a lamellar structure have high strength but low strain. To improve this, impurities were removed through hydrogen plasma arc melting (HPAM) and annealed. HPAM can remove substitutional/interstitial solid solutions. As a result, from 6733 ppm to 4573 ppm of initial impurities were removed by HPAM process. In addition, the strain was improved by spheroidizing and coarsening the lamellar structure through annealing. The effect of impurities removed through HPAM on the Young's modulus, yield strength, and strain was observed.

Effect of Bladder Wall Thickness Through Change of Bladder Volume and Material Properties on Detrusor activity Study (체적의 변화를 통한 방광벽 두께와 기계적 재료상수 변화가 배뇨근 활동에 미치는 영향)

  • Jun, Su-Min;Lee, Moon-Kyu;Choi, Bum-Kyoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.5
    • /
    • pp.584-590
    • /
    • 2012
  • The structural and functional disorder of a detrusor induces a bladder hypertrophy and degenerates a bladder muscle gradually by preventing normal urination. Thus, the thickness of the bladder wall has been increased in proportion to the degree of bladder outlet obstruction. In this study, the mechanical characteristics of the detrusor is analyzed for the physical properties and the thickness changes of the bladder muscle using a mathematically analytic method. In order to obtain the mechanical property of the bladder muscle, the tensile test of porcine bladder tissue is performed because its property is similar to that of human. The result of tensile test is applied to the mathematically model as Mooney Rivlin coefficients which represent the hyperelastic material. The model of the bladder is defined as the spherical shape with the initial volume of 50ml. The principal stress and strain according to the thickness are analyzed. Also, computer simulations for three types of the material property for the model of the bladder are performed based on the fact that the stiffness of the bladder is weakened as the progress of the benign prostatic hyperplasia. As a result, the principal stress is 341kPa at the initial thickness of 2.2mm, and is 249kPa at 6.5mm. As the bladder wall thickness increases, the principal stress decreases. The principal stress and strain decrease as the stiffness of the bladder decreases under the same thinkness.