• 제목/요약/키워드: Initial Strain

검색결과 1,353건 처리시간 0.032초

알루미늄 판재 스트래칭에서 초기 집합조직이 성형성에 미치는 영향 (Effects of the Initial Texture on Formability in Aluminum Sheet Stretching)

  • 심경섭;김용일;이용신
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.62-65
    • /
    • 2001
  • The effects of the initial torture of workpiece as well as the process conditions such as punch speed and lubrication on the formablity of sheet stretching are investigated by experiments. Two types of the initial textures of aluminum sheet plane strain compression torture and recrystallization texture are chosen since those are the most common in practice. Punch loads vs depth and thickness strain distributions along radial directions having the slope of $0^{\circ},\;45^{\circ},\;90^{\circ}$ with rolling directions are reported for hemishperical punch stretchings under a variety of process conditions.

  • PDF

Creep Life Prediction for Udimet 720 Material Using the Initial Strain Method (ISM)

  • Kong, Yu-Sik;Yoon, Han-Ki;Oh, Sae-Kyoo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권4호
    • /
    • pp.469-476
    • /
    • 2003
  • Despite of considerable research results or uniaxial tension creep available for superalloys, few studies have been made on high temperature creep using the Initial Stram Method (ISM) In this paper, the real-time prediction of high temperature creep strength and creep lift for the nickel-based superalloy Udimet 720 (high-temperature and high-pressure gas turbine engine materials) was performed on round-bar type specimens under pure static load at the temperatures of 538$^{\circ}C$. 649$^{\circ}C$, and 704$^{\circ}C$. The predictive equation derived from the ISM in creep tests showed better reliability than those from LMP (Larson-Miller Parameter) and LMP-lSM (Larson Miller Parameter-Initial Strain Method) specially for long time creep prediction (10$^3$∼10$\^$5/h).

ISM에 의한 마찰용접재(SUH3-SUH35)의 고온크리프 수명예측에 관한 연구 (High Temperature Creep Life Prediction of Friction Welded Joints by Initial Strain Method and the AE Evaluation)

  • 오세규;이원석
    • 한국해양공학회지
    • /
    • 제11권4호
    • /
    • pp.40-48
    • /
    • 1997
  • There are many research results as individual uni-axial tension creep test of heat-resisting materials. However, there are very few about the study on the high temperature creep test for the Initial Strain Method, and especially any study on it about the friction welded joints of SUH3 to SUH35. One of the important concerns is a reliable method of evaluating static creep properties. No reliable method seems available at present to evaluate or predict static creep properties. So, the reliable method to evaluate and predict them by the ISM and AE techniques was made.

  • PDF

화력 발전용 로터강의 초기 변형율이 CYCLIC 크리프 특성에 미치는 영향에 관한 연구 (A Study on the Effect of Initial Strain on Cyclic Creep Properties of Steam Turbine Rotor Steel)

  • 오세규;정순억;한상덕
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.78-86
    • /
    • 1992
  • The creep behaviors of 1%Cr-Mo-V and 12%Cr steam turbine rotor steels under static or cyclic load were examined at 600 and $700^{\circ}C$. The relationship between these two kinds of phenomena was studied and the experimental results were summarized as follows: 1) It is confirmed that the cyclic creep strain dependent on time is more available for creep, behavior analysis according to frequency change than that dependent on number of cycles, and the static creep, the special case of cyclic creep with stress ratio of 1 can be also more effectively analyzed by time-dependence. 2) The steady cyclic creep rate vs. the steady static creep rate, increases according to the increase of stress ratio, and this phenomena may occur on occasion of the decrease of the internal stress. 3) The initial strain affects on all the creep properties of the transient region, the steady state region and the rupture time in cyclic creep as well as static creep, and the quantitative relationships among them exist.

  • PDF

Rate-dependent shearing response of Toyoura sand addressing influence of initial density and confinement: A visco-plastic constitutive approach

  • Mousumi Mukherjee;Siddharth Pathaka
    • Geomechanics and Engineering
    • /
    • 제34권2호
    • /
    • pp.197-208
    • /
    • 2023
  • Rate-dependent mechanical response of sand, subjected to loading of medium to high strain rate range, is of interest for several civilian and military applications. Such rate-dependent response can vary significantly based on the initial density state of the sand, applied confining pressure, considered strain rate range, drainage condition and sand morphology. A numerical study has been carried out employing a recently proposed visco-plastic constitutive model to explore the rate-dependent mechanical behaviour of Toyoura sand under drained triaxial loading condition. The model parameters have been calibrated using the experimental data on Toyoura sand available in published literature. Under strain rates higher than a reference strain rate, the simulation results are found to be in good agreement with the experimentally observed characteristic shearing behaviour of sand, which includes increased shear strength, pronounced post-peak softening and suppressed compression. The rate-dependent response, subjected to intermediate strain rate range, has further been assessed in terms of enhancement of peak shear strength and peak friction angle over varying initial density and confining pressure. The simulation results indicate that the rate-induced strength increase is highest for the dense state and such strength enhancements remain nearly independent of the applied confinement level.

줄기 엽채소의 기계적 파지시 리올로지 특성 (Rheological Properties of Bundled Leaf Vegetables Held and Picked-up by Machine)

  • 전현종;김상헌
    • Journal of Biosystems Engineering
    • /
    • 제32권6호
    • /
    • pp.395-402
    • /
    • 2007
  • This study was carried out as basic researches to develop the leaf vegetable harvester. This study was conducted to investigate physical and rheological properties of bundled leaf vegetables with stem (Chinese leek, Crown daisy and Chamnamul) as test materials held and picked-up by a machine. Stress-strain behavior, stress relaxation, and strain recovery for the bundled materials were analyzed using simple Maxwell model. Physical and rheological properties of the materials were investigated by measuring rupture load, deformation and stress experimentally. Also, strain recovery time when unloading was measured using super high speed camera. Recorded recovery time for stress-strain behavior was0.026 s for Chinese leek with liner strain recovery, 0.046 s for Crown daisy and 0.05 s for Chamnamul with non-linear strain recovery. Furthermore, the strain recovery time for permanent deformation was 0.026 s, 0.046 s, and 0.05 s for Chinese Leek, Crown daisy and Chamnamul, respectively. Finally, strain recovery time and strain recovery ratio for the test materials were 0.17 s, 60.4% in Chinese leek, 0.12 s, 55.3% in Crown daisy, 0.15 s, 58.7% in Chamnamul. Here strain recovery time means that how fast the test materials are recovered from initial deformation and strain recovery ratio means how much the test materials are recovered from initial deformation. The above results show that the test materials can be held enough and moved by the belts.

인장과 휨변형하에서 목재의 응력이완 및 이론모형 (Stress Relaxation of Wood and Theoretical Models under Tensile and Bending Strain)

  • 장상식;강춘원
    • Journal of the Korean Wood Science and Technology
    • /
    • 제26권4호
    • /
    • pp.13-19
    • /
    • 1998
  • Stress relaxation tests have been performed under five different tensile strain levels and five different bending strain levels. Three different theoretical models have been developed based on four-element Burger's model, viscoelastic theory and viscous-viscoelastic theory. Experimental data were used to obtain parameters of the models and to verify accuracy of the models. Among the three theoretical models developed in this study, three-integral model (Model 3) based on viscous-viscoelastic theory showed the most exact estimations of stress relaxation under both tensile and bending strains and their correlation coefficients were greater than 0.99 for all the strain levels. Model 1 showed little initial stress relaxation. Model 2 showed excessive initial relaxation and, then, no relaxation after about 20 minute of strain application. Stress retention under strain decreased as strain increased, which means increased stress relaxation as strain increases. When the strain level was less than proportional limit, the effect of strain level on stress relaxation was not clearly shown. However, this effect was increased as strain level increased when strain level was greater than proportional limit.

  • PDF

변형률속도에 따른 고강도 강판의 이방성 변화에 관한 연구 (Effect of Strain Rate on the Anisotropic Deformation Behavior of Advanced High Strength Steel Sheets)

  • 허지향;허훈;이창수
    • 소성∙가공
    • /
    • 제20권8호
    • /
    • pp.595-600
    • /
    • 2011
  • This paper investigates the effect of strain rate on the anisotropic deformation behavior of advanced high strength steel sheets. Uniaxial tensile tests were carried out on TRIP590 and DP780 steel sheets at strain rates ranging from 0.001/sec to 100/sec to determine yield stresses and r-values at various loading angles from the reference rolling direction. R-values were determined by the digital image correlation technique. Hill48 and Yld2000-2d yield functions were tested for their capability to describe the plastic deformation anisotropy of the materials. Initial yield loci were constructed using the Yld2000-2d yield function, which adequately described the anisotropic behavior of the materials. The shape of the initial yield loci was found to change with different strain rate, and the anisotropic behavior decreased with increasing strain rate.

0.5Tm 이하에서의 AZ31 마그네슘합금의 크리이프 변형과 단시간 파단수명예측 (Prediction of Creep Deformation and Short Time Rupture Life of AZ31 Magnesium Alloy below 0.5Tm)

  • 강대민;안정오;전성호;구양;심성보
    • 소성∙가공
    • /
    • 제17권8호
    • /
    • pp.558-563
    • /
    • 2008
  • The initial strain, the applied stress exponent, the activation energy, and rupture time in AZ31 magnesium alloy have been measured in order to predict the deformation mechanism and rupture life of creep over the temperature range of 423-443K. Creep tests were carried out under constant applied stress and temperature, and the lever type tester and automatic temperature controller was used for it, respectively. The experimental results showed that the applied stress exponent was about 9.74, and the activation energy for creep, 113.6KJ/mol was less than that of the self diffusion of Mg alloy including aluminum. From the results, the mechanism for creep deformation seems to be controlled by cross slip at the temperature range of 423-443K. Also the higher the applied stress and temperature, the higher the initial strain. And the rupture time for creep decreased as quadratic function with increasing the initial strain in double logarithmic axis.

내열강 마찰용접재의 ISM에 의한 크리프 수명예측에 관한 연구 (Study on Creep Life Prediction by Initial Strain Method for Friction Welded Joints of Heat Resisting Steels)

  • 김헌경;김일석;이연탁;공유식;오세규
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.46-52
    • /
    • 2001
  • In this paper, the real-time prediction of high temperature creep life was carried out for the friction welded joints of dissimilar heat resisting steels (SUH3-SUH35). various life prediction method such as LMP (Larson_miller Parameter) and ISM (initial strain method) were applied. The creep behaviors of those steels and the welds under static load were examined by ISM combined with LMP at 500, 600 and $700^{\circ}C$, and the relationship between these two methods was investigated. A real-time creep lie (tr, hr) prediction equation by initial strain (${\varepsilon}_0$, %) under any creep stress ($\sigma$, MPa) at any high temperature (T, K) was developed as follows: $t_r={\alpha}{\varepsilon}_0^{\beta}{\sigma}^{-1}$ where, ${\phi}=16: {\alpha}=10^{51.412-0.104T+5.375{\times}10^5T^2}$, $ {\beta}=-83.989+0.180T-9.957{\times}10^{-5}T^2,{\phi}=20:$ ${\alpha}=10^{69.910-0.146T+7.744{\times}10^{-5}T^2$, ${\beta}=-51.442+0.105T-5.595{\times}10^{-5}T^2$ for SUH3-SUH35 friction weld of =16mm and 20mm, respectively.

  • PDF