• 제목/요약/키워드: Initial Reaction Rate

검색결과 509건 처리시간 0.025초

태권도화의 운동역학적 분석 (The Biomecanical Analysis of Taekwondo Footwear)

  • 진영완;곽이섭
    • 한국운동역학회지
    • /
    • 제17권3호
    • /
    • pp.105-114
    • /
    • 2007
  • The purpose of this study was to compare the biomechanical difference of barefoot and two types taekwondo footwear. which will provide scientific data to coaches and players, to further prevent injuries and to improve each players skills. How to an effect on human body which studied a kinematics and kinetics from 8 college students during experiments. This study imposes several conditions by barefoot and two types of taekwondo footwear ran under average $2.56{\pm}0.21\;m$/sec by motion analysis, ground reaction force and electromyography that used to specific A company. First of all, motion analysis was caused by achilles tendon angle, angle of the lower leg, angle of the knee. The result of comparative analysis can be summarized as below. Motion analysis showed that statically approximates other results from achilles tendon angle (p<.01), initial ankle angle(p<.05), initial sole angle(p<.001) and barefoot angle(p<.001). Ground reaction force also showed that statically approximates other results from impact peak timing (p.001), Maximum loading rate(p<.001), Maximum loading rate timing (p<.001) and impulse of first 20 percent (p<.001). showed that averagely was distinguished from other factors, and did not show about that.

염산과 수산화칼슘 수용액과의 반응에 의한 사장석의 용해 거동 (Dissolution Behavior of Plagioclase in HCl and KOH Solutions)

  • 현성필;김수진
    • 한국광물학회지
    • /
    • 제9권2호
    • /
    • pp.71-81
    • /
    • 1996
  • Dissolution experiments were conducted to understand chemical nature of weathering of anorthosite from the Hadong area. Anorthosite and plagioclase from it were reacted with HCl or KOH solutions under various conditions concerning such as grain size, initial pH of solutions, and shaking Average composition of plagioclase used in the experiment was Na0.32Ca0.71Al1.71Si2.28O8.Under acidic conditions, solution pH increases rapidly in the initial stage and then gradually to reach palteau. Shaking agitates the reaction rate in the initial stage but does not affect after the system reached steady state. Ca and si concentrations show rapid increase and then gradual increase. Al concentration increases rapidly in the early stage and then decreases. Later decrease was interpreted as the precipitation of an Al-bearing material. Different dissolution rates of different constituents of plagioclase together the with precipitation of al-bearing material might be responsible for the non-stoichiometric dissolution of plagioclase.X-ray diffraction analyses on anorthosite before and after dissolution experiment show dissolution rates differ with different lattice planes of plagioclase. It suggests the crystallographic control on dissolution reaction. X-ray photoelectron spectroscopic result shows that the average composition of plagioclase surface reacted with HCL of initial pH 1.97 for 2000 hours is Na0.20Ca0.26Al1.7Si2.3O8. It means that Na- and Ca-depleted H-feldspar is developed without Al-depleted layer on the surface of plagioclase by reaction with HCl and that dissolution reaction takes place sparsely on the surface of plagioclase. Al and Si are dissolved preferentially over Ca from anorthosite powder in KHO solution. Reaction of acid-reacted anorthosite with KOH solution shows the same Si dissolution behavior as in the fresh anorthosite. This indicates that the Al-depleted and Si-enriched layer does not build up on the acid-reacted surface.

  • PDF

Cure Reactions of Epoxy/Anhydride/(Polyamide Copolymer) Blends

  • Youngson Choe;Kim, Wonho
    • Macromolecular Research
    • /
    • 제10권5호
    • /
    • pp.259-265
    • /
    • 2002
  • The cure kinetics of blends of epoxy (DGEBA, diglycidyl ether of bisphenol A)/anhydride resin with polyamide copolymer, poly(dimmer acid-co-alkyl polyamine), were studied using differential scanning calorimetry (DSC) under isothermal condition. On increasing the amount of polyamide copolymer in the blends, the reaction rate was increased and the final cure conversion was decreased. Lower values of final cure conversions in the epoxy/(polyamide copolymer) blends indicate that polyamide hinders the cure reaction between the epoxy and the curing agent. The value of the reaction order, m, for the initial autocatalytic reaction was not affected by blending polyamide copolymer with epoxy resin, and the value was approximately 1.3, whereas the reaction order, n, for the general n-th order of reaction was increased by increasing the amount of polyamide copolymer in the blends, and the value increased from 1.6 to 4.0. A diffusion-controlled reaction was observed as the cure conversion increased and the rate equation was successfully analyzed by incorporating the diffusion control term for the epoxy/anhydride/(polyamide copolymer) blends. Complete miscibility was observed in the uncured blends of epoxy/(polyamide copolymer) up to 120 $^{\circ}C$, but phase separations occurred in the early stages of the curing process at higher temperatures than 120 "C. During the curing process, the cure reaction involving the functional group in polyamide copolymer was detected on a DSC thermogram.gram.

The Reactions of O(3P) Atom with Halomethanes: Discharge Flow-Chemiluminescence Imaging Method

  • Lee, Jee-Yon;Yoo, Hee-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권2호
    • /
    • pp.291-294
    • /
    • 2002
  • The reactions of triplet oxygen atom with halomethanes as a potential fire extinguisher were studied by a discharge flow-chemiluminescence imaging method. The experiments were carried out under second order conditions. The bimolecular atom-molecule reaction rate constants were determined in terms of the initial rate method. The initial concentration of oxygen atom was also determined under second order rate law instead of the pseudo-first order conditions with $[O(^3P)]_0{\ll}[sample]_0$. The second order conditions were more reliable than pseudo-first order conditions for the determinations of rate constants. The rate constants of the reactions $CF_3I\;+\;O(^3P)$, $CH_3PI\;+\'O(^3P)$, and $CHBrCl_2\;+\;O(^3P)$ were determined to be $5.0\;{\times}\;10^{-12}$ , $1.1\;×\;0^{-11}$ , and $1.9\;{\times}\;10^{-14}cm^3molecule^{-1}s^{-1}$, respectively.

광촉매와 암방전(dark discharge) 복합 시스템을 이용한 VOC의 분해 (Degradation of VOC by Photocatalysts and Dark Discharge Hybrid Systems)

  • 정지훈
    • Korean Chemical Engineering Research
    • /
    • 제46권5호
    • /
    • pp.852-857
    • /
    • 2008
  • 광촉매의 고정화는 광촉매의 이용범위를 넓히기 위해서 매우 중요한 기술이다. 광촉매를 고정화시키기 위해 티타늄 표면을 양극산화 시켜 $TiO_2$로 전환시킬 수 있다. 양극산화에 의해 제조된 $TiO_2$는 광촉매 활성을 가지고 있으며 표면은 스펀지와 비슷한 형태를 나타내었다. 다양한 초기농도, 습도, 방전전압 하에서 양극산화에 의해 티타니아를 제조 이를 이용하여 기상의 아세트알데히드와 VOC의 광촉매 분해반응을 연구하였다. 양극산화 티타니아의 반응성은 상대습도가 증가함에 따라 증가하였으나 너무 높은 습도는 반응성을 감소시켰다. 광촉매 반응과 전기 방전을 결합시키면 VOC 제거효율이 크게 증가 되었으나, 과도한 전압을 가하여 코로나 방전이 발생되면 반응속도가 오히려 감소되었다. 최적 상대습도는 40%였으며 최적 방전전압은 암방전 영역인 5 kV였다.

가압하 석탄 촤의 $CO_2$ 가스화 반응성 연구 (Reactivity of Coal Char Gasification with $CO_2$ at Elevated Pressure)

  • 박호영;안달홍;김시문;김종진
    • 에너지공학
    • /
    • 제12권3호
    • /
    • pp.231-240
    • /
    • 2003
  • 국내 발전용으로 수입되는 5개 석탄 촤의 이산화탄소 가스화 반응성을 전압력 0.5∼2.0 MPa, 반응온도 850∼100$0^{\circ}C$의 범위에서 가압열중량분석기를 사용하여 고찰하였다. 석탄 등급, 촤의 초기 물성, 그리고 압력이 반응속도에 미치는 영향을 평가하였다. 낮은 등급의 석탄 촤의 반응성이 높은 등급의 석탄 촤보다 좋았으며 이는 촤의 기공구조와 반응 표면적의 항으로 설명되었다. 기공특성 데이터중 대/중간 기공이 반응성에 미치는 영향이 켰으며 이는 반응가스가 촤 표면적으로 확산하는 통로를 제공하기 때문인 것으로 보인다. $CO_2$ 분압 0.18∼0.495 MPa 범위에서 촤의 반응속도는 분압에 비례하였으며 반응 차수는 약 0.4∼0.7의 범위에 있었다. 반응속도에 대한 전압력의 영향은 작은 것으로 나타났으며 미반응핵 모델에 근거한 5개 촤의 반응성 지수를 구하였다.

A Clue for Prebiotic Era: Cross-Catalytic Replication of an RNA Ligase Ribozyme

  • Kim Dong-Eun;Joyce Gerald F.
    • 한국생명과학회:학술대회논문집
    • /
    • 한국생명과학회 2004년도 국제학술심포지움
    • /
    • pp.22-26
    • /
    • 2004
  • A self-replicating RNA ligase ribozyme was converted to a cross-catalytic format whereby two ribozymes direct each other's synthesis from a total of four component substrates. Each ribozyme binds two RNA substrates and catalyzes their ligation to form the opposing ribozyme. The two ribozymes are not perfectly complementary, as is the case for replicating nucleic acid genomes in biology. Rather, the ribozymes contain both template elements, which are complementary, and catalytic elements, which are identical. The specificity of the template interactions allows the cross-catalytic pathway to dominate over all other reaction pathways. In the presence of $2{\mu}M$ each of the corresponding substrates, one ribozyme catalyzes the synthesis of the second ribozyme with an initial rate of $6.8{\times}10^{-3}\;min^{-1}$, while the second ribozyme catalyzes the synthesis of the first with an initial rate of $2.9{\times}10^{-3}min{-1}$. As the concentration of the two ribozymes increases, the rate of formation of additional ribozyme molecules increases, consistent with the overall autocatalytic behavior of the reaction system. Here, I present results that possibly demonstrate a clue for a self-replicating molecule by showing an RNA ligase ribozyme, which is reminiscent of 'Prebiotic Era'.

  • PDF

GF/C에 고정된 TiO2와 유동층 반응기를 이용한 Rhodamine B의 광촉매 탈색 (Photocatalytic Decolorization of Rhodamine B using Immobilized TiO2 onto GF/C and Fluidized Bed Reactor)

  • 박영식;안갑환
    • 한국환경과학회지
    • /
    • 제12권12호
    • /
    • pp.1277-1284
    • /
    • 2003
  • The photocatalytic oxidation of Rhodamine B (RhB) was studied using immobilized TiO$_2$ and fluidized bed reactor. Immobilized TiO$_2$ onto GF/C was employed as the photocatalyst and a 30 W germicidal lamp was used as the light source and the reactor volume was 4.8 L. The effects of parameters such as the amounts of photocatalyst, initial concentration, initial pH, air flow rate and anion additives (NO$_3$$\^$-/, SO$_4$$\^$2-/, Cl$\^$-/, CO$_3$$\^$2-/) competing for reaction. The results showed that the optimum dosage of the immobilized TiO$_2$ was 40.0 g/L. Initial removal rate of immobilized TiO$_2$ was expressed Langmuir - Hinshelwood equation.

방전Plasma 반응에 의한 NOx의 안전처리에 관한 연구 (A Study on Safety Treatment of NOx by Discharge Plasma Reaction)

  • 최재욱;야마구마 미즈키
    • 한국안전학회지
    • /
    • 제15권2호
    • /
    • pp.92-96
    • /
    • 2000
  • In this experiment, we studied about concentration characteristics of $NO_x$ and generation of ozone in the reactor of corona discharge type by using mixed gas of $NO/N_2$ and $N_2/O_2$. In the case of the initial NO concentration increased, decrease rate of NO concentration was weakened and discharge input power of minimum NO concentration became high. When NO concentration was high, NO decomposition limit was appeared. And NO reduction rate was decreased, when initial NO concentration and discharge input power increased. When discharge input power was 5W, we could know the most proper energy value for treatment of NO. When the concentration of initial NO increased, generation of ozone decreased and in the case of same concentration of NO, according to discharge input power increase, generation of ozone increased.

  • PDF

디니트로티오펜계 분산염료인 C. I. Disperse Green 9의 알칼리 가수분해 반응속도 및 반응메카니즘 (Kinetics and Mechanism for Alkaline Hydrolysis of Dinitrothiophene Disperse Dye(C. I. Disperse Green 9))

  • 박건용;김재현
    • 한국염색가공학회지
    • /
    • 제19권4호
    • /
    • pp.18-25
    • /
    • 2007
  • Kinetics and mechanism for alkaline hydrolysis of C. I. Disperse Green 9(G-9) of dinitrothiophene disperse dye were investigated. As soon as G-9 contacted with alkali, instant and continuous decreases of color strength of G-9 followed with increasing time. The hydrolysis rate of G-9 increased with increasing alkali, and it was found that alkali appeared first order dependence. The observed rate constants obtained from hydrolysis of various amount of dye were similar values, and calculation of initial rates showed that G-9 hydrolyzed by first order reaction for dye. Therefore it was confirmed that the overall reaction was second order, $SN_2$ of nucleophilic substitution reaction. Increasing temperature enhanced the hydrolysis of G-9. From the results of hydrolysis performed at various temperatures, it was obtained that activation energy(Ea) was 12.6 kcal/mole, enthalpy of reaction(${\triangle}H$) was 12.0 kcal/mole, and entropy of reaction(${\triangle}S$) was $29.8J/mol{\cdot}K$.