• 제목/요약/키워드: Initial Flame

검색결과 208건 처리시간 0.023초

제트 확산화염에서 $CH_4/O_2$의 화염길이 특성 (Flame Length Characteristics of $CH_4/O_2$ on Jet Diffusion Flame)

  • 김호근;이상민;김한석;안국영;김용모
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1328-1333
    • /
    • 2004
  • The Flame length of $CH_4$ with the Oxidizer of air and $O_2$ has been measured respectively for the nozzle diameter of 1.6mm, 2.7mm, 4.4mm and 7.7mm. In all $CH_4$ flame on oxidizer of air and $O_2$. the flame length was independent of the initial jet diameter, dependent only on the flowrate in laminar flame regime, and in turbulent flame dependent on the initial jet diameter. Using correlation equation of Delichatsios, the flame length has been expected exactly for $CH_4/air$ flame, but has been underestimated for $CH_4/O_2$ flame. This paper has proposed correlation equation of $CH_4/O_2$ flame.

  • PDF

부분 예혼합 화염의 예열공기 연소특성 (Preheated Air Combustion Characteristics of Partially Premixed Flame)

  • 이승영;이종호;전충환;장영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.65-70
    • /
    • 2001
  • OH radical and NOx have been measured in a methane-air partially premixed flame using PLIF technique to define preheated air combustion characteristics. The temperature of mixture is determined by 300K, 400K, 600K and 800K below the auto-ignition temperature respectively. Flame height increases as equivalence ratio increased. As initial enthalpy is supplied, the radius of flame was increased and much amount of yellow flame in rich equivalence ratio was observed. This is due to the faster burning velocity. Also initial oxidization begins earlier as the initial temperature of mixture increased. It means that height of premixed flame front decreased. This phenomenon can be observed OH PLIF image. The qualitative analysis of OH concentration in the PLIF image shows that overall OH concentration increases with equivalence ratio and the initial temperature of mixture increased. At the preheating temperature goes up, axial gradient of OH concentration is less steep than that of lower temperature condition. This may identify that combustion reacts continuously, so preheated air combustion can evade the local heating and make high temperature indiscriminately in the overall reaction zone.

  • PDF

메탄-수소-공기 예혼합기의 연소특성(II) (Combustion Characteristics of Methane-Hydrogen-Air Premixture(II))

  • 김봉석;이영재
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.156-167
    • /
    • 1996
  • The present work is a continuation of our previous study to investigate the effects of parameters such as equivalence ratio, hydrogen supplement rate and initial pressure on combustion characteristics in a disk-shaped constant volume combustion chamber. The main results obtained from the study can be summarized as follows. The flames in near stoichiometric mixture of methane-air are propagated with a spherical shape, but in excess rich or lean mixtures are propagated with a elliptical shape. And, they are changed to an unstable elliptical shape flame with very regular cells by increasing the hydrogen supplement rate. Also, flame is sluggishly propagated at increased initial pressure in combustion chamber. Volume fraction of burned gas and flame radius as the combustion characteristics are increased by increasing the hydrogen supplement rate, especially at the combustion middle period, but then are slowly increased by increasing the initial pressure.

  • PDF

액체연료 의 분사연소시 분사조건 이 화염 과 액적군 의 성질 에 미치는 영향 (The Effects of Spray Parameters on the Flame and Spray Characteristics for Liquid Fuel Spray Flame)

  • 김호영
    • 대한기계학회논문집
    • /
    • 제8권3호
    • /
    • pp.201-209
    • /
    • 1984
  • 본 연구는 Kim과 Chiu가 사용한 연속체 관점에서 유도된 액체-기체상의 2상유 동모델(Two Phase Flow:TPF)을 이용하여 초기 집단연소수(group combustion number)의 크기, 즉 액적들의 초기 분포상태에 따른 연소상태를 예측 분류한다. 또한 이때 예 측된 대표적인 연소상태에서 형성되는 화염의 성질을 비교 검토한다.

초기 직경이 n-heptane 액적 연소 특성에 미치는 영향 (Influence of Initial Diameter on the Combustion Characteristics of n-heptane Droplet)

  • 서현규
    • 한국분무공학회지
    • /
    • 제18권2호
    • /
    • pp.94-99
    • /
    • 2013
  • The spherically-symmetric burning of an isolated droplet is a dynamic problem that involves the coupling of chemical reactions and multi-phase flow with phase change. For the improved understanding of these phenomena, this paper presents the numerical results on the n-heptane droplet combustion conducted at a 1 atm ambient pressure in three different initial droplet diameter ($d_0$). The main purpose of this study is to provide basic information of droplet burning, extinction and flame behavior of n-heptane and improve the ability of theoretical prediction of these phenomena. To achieve these, the numerical analysis was conducted in terms of normalized droplet diameter ($d/d_0$), flame diameter ($d_f$) and flame standoff ratio (FSR) under the assumptions that the droplet combustion can be described by both the quasi-steady behavior for the region between the droplet surface and the flame interface and the transient behavior for the region between the flame interface and ambient surrounding.

메탄/공기 확산화염에서 복사 열손실로 인한 맥동 불안정에 관한 수치해석 (A Numerical Study on Radiation-Induced Oscillatory Instability in CH$_4$/Air Diffusion Flames)

  • 손채훈;정석호
    • 대한기계학회논문집B
    • /
    • 제25권1호
    • /
    • pp.29-35
    • /
    • 2001
  • Radiation-induced oscillatory instability in CH$_4$/Air diffusion flames is numerically investigated by adopting detailed chemistry. Counterflow diffusion flame is employed as a model flamelet and optically thin gas-phase radiation is assumed. Attention is focused on the extinction regime induced by radiative heat loss, which occurs at low strain rate. Once a steady flame structure is obtained for a prescribed value of initial strain rate, transient solution of the flame is calculated after a finite amount of strain-rate perturbation is imposed on the steady flame. Depending on the initial strain rate and the amount of perturbed strain rate, transient evolution of the flame exhibits various types of flame-evolution behaviors. Basically, the dynamic behaviors can be classified into two types, namely oscillatory decaying solution and diverging solution leading to extinction.

정적연소기에서의 메탄-공기 혼합기의 연소특성(1) : 균질급기 (Combustion Characteristics of Methane-Air Mixture in a Constant Volume Combustion Chamber(1): Homogeneous Charge)

  • 최승환;전충환;장연준
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.48-57
    • /
    • 2003
  • A cylindrical constant volume combustion chamber was used to investigate the flow characteristics at spark plug and the combustion characteristics of homogeneous charge methane-air mixture under various initial pressure, excess air ratio and ignition times in quiescent mixture. The flow characteristics such as mean velocity and turbulence intensity was analyzed by hot wire anemometer. Combustion pressure development measured by piezoelectric pressure transducer and flame propagation acquired by ICCD camera were used to investigate the effect of initial pressure, excess air ratio and ignition times on pressure, combustion duration, flame speed and burning velocity. Mean velocity and turbulence intensity had the maximum value at 200 or 300ms and then decreased to near 0 value gradually after 3 seconds. Combustion duration, flame speed and burning velocity were observed to be promoted with excess air ratio of 1.1, lower initial pressure and ignition time of 300ms.

Analysis of Combustion and Flame Propagation Characteristics of LPG and Gasoline Fuels by Laser Deflection Method

  • Lee, Ki-Hyung;Lee, Chang-Sik;Ryu, Jea-Duk;Park, Gyung-Min
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.935-941
    • /
    • 2002
  • This work is to investigate the combustion characteristics and flame propagation of the LPG (liquified petroleum gas) and gasoline fuel. In order to characterize the combustion processes of the fuels, the flame propagation and combustion characteristics were investigated by using a constant volume combustion chamber The flame propagation of both LPG and gasoline fuels was investigated by the laser deflection method and the high-speed Schlieren photography. The result of laser deflection method show that the error of measured flame propagation speed by laser method is less than 5% compared with the result of high-speed camera. The flame propagation speed of the fuel is increased with the decrease of initial pressure and the increase of initial temperature in the constant volume chamber. The results also show that the equivalence ratio has a grate effect on the flame speed, combustion pressure and the combustion duration of the fuel-air mixture.

정적연소기에서의 메탄-공기 균질혼합기의 연소특성 분석 (Combustion Characteristics Analysis of Methane-Air Homogeneous Mixture in a Constant Volume Combustion Chamber)

  • 이석영;김상진;전충환
    • 한국연소학회지
    • /
    • 제13권3호
    • /
    • pp.9-16
    • /
    • 2008
  • In this study, a cylindrical constant volume combustion chamber is used to investigate the flow and combustion characteristics of methane-air homogeneous mixture under various initial charge pressure, excess air ratios and ignition times. The flame and burning speed, mean gas speed are calculated by numerical analysis to analyze the combustion characteristics. It is found that the mean gas velocity during combustion has the maximum value around 300 ms and then decreased gradually on the condition of 10000 ms, and that the combustion duration is shorten and flame speed and burning velocity have the highest value under the conditions of an excess air ratio 1.1, an initial charge pressure of 0.2 MPa and an ignition time of 300 ms in the present study. And, the initial pressure and burning speed are in inverse proportion, so that it is in agreement with Strehlow who presented that the initial pressure and burning speed are in inverse proportion when the burning speed is under 50cm/s.

  • PDF

4-벨브 가솔린 엔진에서 텀블, 스월 유동이 화염전파에 미치는 영향 (The Effects of Tumble and Swirl Flows on the Flame Propagation in a 4-Valve Gasoline Engine)

  • 배충식;강건용
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1997년도 제15회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.153-162
    • /
    • 1997
  • The effects of tumble and swirl flows on the flame propagation were investigated experimentally in a 4-valve optical gasoline engine. The tumble flow patterns, generated by various intake ports of different entry angle; $25^{\circ}$ , $20^{\circ}$ and $15^{\circ}$ , were characterized under motored conditions with laser Doppler velocirnetry. Inclined tumble(swirl) flows were induced by three different swirl control valves. The initial flame propagation was visualized by an ICCD camera and its image were analyzed to compare the enflamed area and displacement of initial flames. It was found that there is a correlation between the stronger tumble during induction and turbulence levels at the time of ignition resulting in faster flame development. Inclined tumble was proved to be more beneficial than the pure tumble for faster and stable combustion under lean mixture conditions, which was confirmed by faster propagating flame images.

  • PDF