• 제목/요약/키워드: Inhomogeneous beam

검색결과 56건 처리시간 0.021초

미끄러짐 모드에서의 경량 재료를 이용한 이중외팔보 시험편의 파손 특성 (Fracture Characteristic of Double Cantilever Beam Specimen Using Lightweight Material at Sliding Mode)

  • 김재원;조재웅
    • 한국기계가공학회지
    • /
    • 제20권3호
    • /
    • pp.16-23
    • /
    • 2021
  • The fracture characteristic of the bonded interface under the application of a sliding load to a double cantilevered specimen manufactured using lightweight material was examined. Inhomogeneously bonded materials such as Al6061-T6, CFRP, and CFRP-Al were employed. In the experiment, the specimen was loaded on both directions by applying a shearing load to the bonding interface. The experimentally obtained stress, specific strength and energy release rate values were examined. CFRP exhibited excellent specific strength. The experimental results demonstrated that the inhomogeneous bonded material CFRP-Al exhibited an overall high performance in comparison with the single materials.

Inhomogeneous bonding state modeling for vibration analysis of explosive clad pipe

  • Cao, Jianbin;Zhang, Zhousuo;Guo, Yanfei;Gong, Teng
    • Steel and Composite Structures
    • /
    • 제31권3호
    • /
    • pp.233-242
    • /
    • 2019
  • Early detection of damage bonding state such as insufficient bonding strength and interface partial contact defect for the explosive clad pipe is crucial in order to avoid sudden failure and even catastrophic accidents. A generalized and efficient model of the explosive clad pipe can reveal the relationship between bonding state and vibration characteristics, and provide foundations and priory knowledge for bonding state detection by signal processing technique. In this paper, the slender explosive clad pipe is regarded as two parallel elastic beams continuously joined by an elastic layer, and the elastic layer is capable to describe the non-uniform bonding state. By taking the characteristic beam modal functions as the admissible functions, the Rayleigh-Ritz method is employed to derive the dynamic model which enables one to consider inhomogeneous system and any boundary conditions. Then, the proposed model is validated by both numerical results and experiment. Parametric studies are carried out to investigate the effects of bonding strength and the length of partial contact defect on the natural frequency and forced response of the explosive clad pipe. A potential method for identifying the bonding quality of the explosive clad pipe is also discussed in this paper.

Dynamic responses of a beam with breathing cracks by precise integration method

  • Cui, C.C.;He, X.S.;Lu, Z.R.;Chen, Y.M.;Liu, J.K.
    • Structural Engineering and Mechanics
    • /
    • 제60권5호
    • /
    • pp.891-902
    • /
    • 2016
  • The beam structure with breathing cracks subjected to harmonic excitations was modeled by FEM based on Euler-Bernoulli theory, and a piecewise dynamical system was deduced. The precise integration method (PIM) was employed to propose an algorithm for analyzing the dynamic responses of the deduced system. This system was first divided into linear sub-systems, between which there are switching points resulted from the breathing cracks. The inhomogeneous terms due to the external excitations were tackled by introducing auxiliary variables to express the harmonic functions, hence the sub-systems are homogeneous. The PIM was then applied to solve the homogeneous sub-systems one by one. During the procedures, a predictor-corrector algorithm was presented to determine the switching points accurately. The presented method can provide solutions with an accuracy to a magnitude of $10^{-12}$ compared with exact solutions obtained by the theories of ordinary differential equations. The PIM results are much more accurate than Newmark ones with the same time step. Moreover, it is found that the PIM can maintain a high level of accuracy even when the time step increases within a relatively wide range.

Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • 제4권3호
    • /
    • pp.229-249
    • /
    • 2016
  • In this paper, buckling characteristics of nonhomogeneous functionally graded (FG) nanobeams embedded on elastic foundations are investigated based on third order shear deformation (Reddy) without using shear correction factors. Third-order shear deformation beam theory accounts for shear deformation effects by a parabolic variation of all displacements through the thickness, and verifies the stress-free boundary conditions on the top and bottom surfaces of the FG nanobeam. A two parameters elastic foundation including the linear Winkler springs along with the Pasternak shear layer is in contact with beam in deformation, which acts in tension as well as in compression. The material properties of FG nanobeam are supposed to vary gradually along the thickness and are estimated through the power-law and Mori-Tanaka models. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. Nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. Comparison between results of the present work and those available in literature shows the accuracy of this method. The obtained results are presented for the buckling analysis of the FG nanobeams such as the effects of foundation parameters, gradient index, nonlocal parameter and slenderness ratio in detail.

팬텀투과계수와 유효조사면 개념을 이용한 종양선량 확인에 관한 연구 (IN-VIVO DOSE RECONSTRUCT10N USING A TRANSMISION FACTOR AND AN EFFECTIVE FIELD CONCEPT)

  • 김유현;여인환;권수일
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제25권1호
    • /
    • pp.63-71
    • /
    • 2002
  • The aim of this study Is to develop a simple and fast method which computes in-vivo doses from transmission doses measured doting patient treatment using an ionization chamber. Energy fluence and the dose that reach the chamber positioned behind the patient is modified by three factors: patient attenuation, inverse square attenuation. and scattering. We adopted a straightforward empirical approach using a phantom transmission factor (PTF) which accounts for the contribution from all three factors. It was done as follows. First of all, the phantom transmission factor was measured as a simple ratio of the chamber reading measured with and without a homogeneous phantom in the radiation beam according to various field sizes($r_p$), phantom to chamber distance($d_g$) and phantom thickness($T_p$). Secondly, we used the concept of effective field to the cases with inhomogeneous phantom (patients) and irregular fields. The effective field size is calculated by finding the field size that produces the same value of PTF to that for the irregular field and/or inhomogeneous phantom. The hypothesis is that the presence of inhomogeneity and irregular field can be accommodated to a certain extent by altering the field size. Thirdly, the center dose at the prescription depth can be computed using the new TMR($r_{p,eff}$) and Sp($r_{p,eff}$) from the effective field size. After that, when TMR(d, $r_{p,eff}$) and SP($r_{p,eff}$) are acquired. the tumor dose is as follows. $$D_{center}=D_t/PTF(d_g,\;T_p){\times}(\frac{SCD}{SAD})^2{\times}BSF(r_o){\times}S_p(r_{p,eff}){\times}TMR(d,\;r_{p,eff})$$ To make certain the accuracy of this method, we checked the accuracy for the following four cases; in cases of regular or irregular field size, inhomogeneous material included, any errors made and clinical situation. The errors were within 2.3% for regular field size, 3.0% irregular field size, 2.4% when inhomogeneous material was included in the phantom, 3.8% for 6 MV when the error was made purposely, 4.7% for 10 MV and 1.8% for the measurement of a patient in clinic. It is considered that this methode can make the quality control for dose at the time of radiation therapy because it is non-invasive that makes possible to measure the doses whenever a patient is given a therapy as well as eliminates the problem for entrance or exit dose measurement.

  • PDF

절곡 강판을 볼트로 체결한 강판-콘크리트 합성보의 휨강도 평가 (Flexural Strength Evaluation of Steel Plate-Concrete Composite Beam using Bolted)

  • 한명환;최병정
    • 한국산학기술학회논문지
    • /
    • 제19권6호
    • /
    • pp.126-136
    • /
    • 2018
  • 강판 콘크리트 합성보는 2개의 이질 재료를 결합하기 위해 강판, 콘크리트 및 전단 연결재로 구성된다. 일반적으로 강판은 기존의 합성보에 용접하여 조립된다. 본 연구에서는 전단 강도를 줄이고 작업성을 향상시키기 위해 SPC Beam이라 불리는 새로운 강판 콘크리트 합성 보(Beam)를 개발했다. SPC 보는 전단 연결재 없이 절곡된 강판과 콘크리트로 구성된다. 절곡된 강판은 용접 대신 고강도 볼트로 조립된다. 현장 건설의 작업성을 향상시키기 위해 슬래브와 접합부에 모자 모양의 Cap이 부착되어 있다. 변위 제어 모드에서 2점 가력의 단조 하중 시험을 수행했다. 정모멘트와 부모멘트에 대한 시편의 굽힘강도는 소성 응력 분포법에 의해 계산되었다. 수행한 시험 결과에 따르면 새로운 SPC 보의 휨 강도는 완전 합성보의 강도의 80% 이다. Cap의 간격을 조절하여 합성율의 증가가 가능했다. 본 연구에서는 정 부모멘트 역에서의 대표 형상을 대상으로 하였기 때문에, 단면 형상과 Cap을 변수로 추가적인 실험과 해석을 통해 SPC Beam의 성능 검증이 수행될 것이다.

반도체 레이저 측면 여기 Nd:YAG 매질에서의 열영향 (Thermal effect at Nd:YAG using a laser-diode side-pumping)

  • 양동옥;김병태
    • 한국광학회지
    • /
    • 제14권1호
    • /
    • pp.44-50
    • /
    • 2003
  • 반도체 레이저 측면 여기시 Nd:YAG 레이저 매질에서 발생하는 열영향에 대해 분석하였다. 열영향을 고감도로 측정하기 위해 편광자와 Nd:YAG 매질 사이에 λ/4판을 삽입하여 여기 파워에 따라 발생하는 depolarization양을 측정하였다. CCD로 는 열영향에 의한 매질 내에서의 탐침광 분포 변화를 측정하고 해석하여 반도체 레이저 측면 여기시 발생하는 열영향을 최소화하기 위한 공진기 설계의 효과적인 방법을 제시하였다.

Thermal loading effects on electro-mechanical vibration behavior of piezoelectrically actuated inhomogeneous size-dependent Timoshenko nanobeams

  • Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • 제4권3호
    • /
    • pp.197-228
    • /
    • 2016
  • In the present study, thermo-electro-mechanical vibration characteristics of functionally graded piezoelectric (FGP) Timoshenko nanobeams subjected to in-plane thermal loads and applied electric voltage are carried out by presenting a Navier type solution for the first time. Three kinds of thermal loading, namely, uniform, linear and non-linear temperature rises through the thickness direction are considered. Thermo-electro-mechanical properties of FGP nanobeam are supposed to vary smoothly and continuously throughout the thickness based on power-law model. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton's principle, the nonlocal equations of motion together with corresponding boundary conditions based on Timoshenko beam theory are obtained for the free vibration analysis of graded piezoelectric nanobeams including size effect and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FGP nanobeams as compared to some cases in the literature. In following a parametric study is accompanied to examine the effects of several parameters such as various temperature distributions, external electric voltage, power-law index, nonlocal parameter and mode number on the natural frequencies of the size-dependent FGP nanobeams in detail. It is found that the small scale effect and thermo-electrical loading have a significant effect on natural frequencies of FGP nanobeams.

LPG 액상분사 엔진에서 아세톤 PLIF를 이용한 연료분포 측정기법 연구 (Acetone PLIF for Fuel Distribution Measurements in Liquid Phase LPG Injection Engine)

  • 오승묵;박승재;허환일;강건용;배충식
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.74-82
    • /
    • 2004
  • Planar laser-induced fluorescence(PLIF) has been widely used to obtain two dimensional fuel distribution. Acetone PLIF is chosen because fluorescence signal from acetone as a fluorescent tracer is less sensitive to oxygen quenching than other dopants. Acetone PLIF is applied to measure quantitative air excess ratio distribution in an engine fueled with LPG. Acetone is excited by KrF excimer laser (248nm) and its fluorescence image is acquired by ICCD camera with a cut-off filter to suppress Mie scattering from the laser light. For the purpose of quantifying PLIF signal, an image processing method including the correction of laser sheet beam profile is suggested. Raw images are divided by each intensity of laser energy and profile of laser sheet beam. Inhomogeneous fluorescence images scaled with the reference data, which is taken by a calibration process, are converted to air excess ratio distribution. This investigation shows instantaneous quantitative measurement of planar air excess ratio distribution for gaseous fuel.

Effect of non-uniform temperature distributions on nonlocal vibration and buckling of inhomogeneous size-dependent beams

  • Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • 제6권4호
    • /
    • pp.377-397
    • /
    • 2018
  • In the present investigation, thermal buckling and free vibration characteristics of functionally graded (FG) Timoshenko nanobeams subjected to nonlinear thermal loading are carried out by presenting a Navier type solution. The thermal load is assumed to be nonlinear distribution through the thickness of FG nanobeam. Thermo-mechanical properties of FG nanobeam are supposed to vary smoothly and continuously throughout the thickness based on power-law model and the material properties are assumed to be temperature-dependent. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton's principle, the nonlocal equations of motion together with corresponding boundary conditions based on Timoshenko beam theory are obtained for the thermal buckling and vibration analysis of graded nanobeams including size effect. Moreover, in following a parametric study is accompanied to examine the effects of the several parameters such as nonlocal parameter, thermal effect, power law index and aspect ratio on the critical buckling temperatures and natural frequencies of the size-dependent FG nanobeams in detail. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared some cases in the literature. Also, it is found that the small scale effects and nonlinear thermal loading have a significant effect on thermal stability and vibration characteristics of FG nanobeams.