• Title/Summary/Keyword: Inhomogeneous beam

Search Result 56, Processing Time 0.018 seconds

Linear and nonlinear vibrations of inhomogeneous Euler-Bernoulli beam

  • Bakalah, Ebrahim S.;Zaman, F.D.;Saleh, Khairul
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.635-647
    • /
    • 2018
  • Dynamic problems arising from the Euler-Bernoulli beam model with inhomogeneous elastic properties are considered. The method of Green's function and perturbation theory are employed to find the deflection in the beam correct to the first-order. Eigenvalue problems appearing from transverse vibrations of inhomogeneous beams in linear and nonlinear cases are also discussed.

Delamination analysis of inhomogeneous viscoelastic beam of rectangular section subjected to torsion

  • Victor I. Rizov
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.69-81
    • /
    • 2023
  • This paper considers a delamination analysis of a statically undetermined inhomogeneous beam structure of rectangular section with viscoelastic behavior under torsion. The beam is built in at its two ends. The beam has two longitudinal inhomogeneous layers with a delamination crack between them. A notch is made in the upper crack arm. The external torsion moment applied on the beam is a function of time. Under these conditions, the beam has one degree of indeterminacy. In order to derive the strain energy release rate, first, the static indeterminacy is resolved. Then the strain energy release rate is obtained by analyzing the balance of the energy with considering the viscoelastic behavior. The strain energy release rate is found also by analyzing the compliance of the beam for checkup. Solution of the strain energy release rate in a beam without a notch in the upper crack arm is derived too. In this case, the beam has two degrees of static indeterminacy (the torsion moment in the upper crack arm is treated as an additional internal redundant unknown). A parametric investigation of the strain energy release rate is carried-out.

Multilayered inhomogeneous beam under prescribed angle of twist and displacements: A delamination analysis

  • Victor I. Rizov
    • Coupled systems mechanics
    • /
    • v.13 no.2
    • /
    • pp.153-170
    • /
    • 2024
  • The problem considered in this theoretical paper is the delamination of a multilayered inhomogeneous beam structure that has viscoelastic behaviour under angle of twist, horizontal and vertical displacements which vary smoothly with time according to prescribed laws. The cross-section of the beam is a rectangle. The layers are made of different materials which are smoothly inhomogeneous along the length of the beam. The beam under consideration represents statically undetermined structure since it is clamped in its two ends. The problem of the strain energy release rate is solved. For this purpose, the strain energy stored in the beam structure is analyzed. In order to verify the solution obtained, the strain energy release rate is found also analyzing the time-dependent compliances of the beam under prescribed angle of twist and displacements. A parametric investigation is carried-out by applying the solution obtained. Special attention is paid to the effect of the parameters which control the variation of the angle of twist and the displacements with time on the strain energy release rate.

Longitudinal cracks in non-linear elastic beams exhibiting material inhomogeneity

  • Rizov, Victor I.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.153-163
    • /
    • 2019
  • Longitudinal fracture behavior of non-linear elastic beam configurations is studied in terms of the strain energy release rate. It is assumed that the beams exhibit continuous material inhomogeneity along the width as well as along the height of the crosssection. The Ramberg-Osgood stress-strain relation is used for describing the non-linear mechanical behavior of the inhomogeneous material. A solution to strain energy release rate is derived that holds for inhomogeneous beams of arbitrary cross-section under combination of axial force and bending moments. Besides, the solution may be applied at any law of continuous distribution of the modulus of elasticity in the beam cross-section. The longitudinal crack may be located arbitrary along the beam height. The solution is used to investigate a longitudinal crack in a beam configuration of rectangular cross-section under four-point bending. The crack is located symmetrically with respect to the beam mid-span. It is assumed that the modulus of elasticity varies continuously according a cosine law in the beam cross-section. The longitudinal fracture behavior of the inhomogeneous beam is studied also by applying the J-integral approach for verification of the non-linear solution to the strain energy release rate derived in the present paper. Effects of material inhomogeneity, crack location along the beam height and non-linear mechanical behavior of the material on the longitudinal fracture behavior are evaluated. Thus, the solution derived in the present paper can be used in engineering design of inhomogeneous non-linear elastic structural members to assess the influence of various material and geometrical parameters on longitudinal fracture.

Investigation of two parallel lengthwise cracks in an inhomogeneous beam of varying thickness

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.9 no.4
    • /
    • pp.381-396
    • /
    • 2020
  • Analytical investigation of the fracture of inhomogeneous beam with two parallel lengthwise cracks is performed. The thickness of the beam varies continuously along the beam length. The beam is loaded in three-point bending. Two beam configurations with different lengths of the cracks are analyzed. The two cracks are located arbitrary along the thickness of the beam. Solutions to the strain energy release rate are derived assuming that the material has non-linear elastic mechanical behavior. Besides, the beam exhibits continuous material inhomogeneity along its thickness. The balance of the energy is analyzed in order to derive the strain energy release rate. Verifications of the solutions are carried-out by considering the complementary strain energy stored in the beam configurations. The influence of the continuous variation of the thickness along the beam length on the lengthwise fracture behavior is investigated. The dependence of the lengthwise fracture on the lengths of the two parallel cracks is also studied.

Inhomogeneous amplitude modulation effects on the MTF of binocular objective (비균일 진폭변조가 쌍안경 대물경의 MTF에 미치는 영향)

  • 홍경희
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.2
    • /
    • pp.102-106
    • /
    • 1999
  • In this study, inhomogeneous amplitude modulation effects on the imaging performance a lens system are expermentally investigated by measuring the diffraction OTF. The lens under the test is a binocular objective made in Korea. Inhomogeneous amplitude modulation is carried out by positioning the modulator cross contacted to the lens under test which is illuminated by collimated light beam. The aberration characteristics of the lens under test are examined by caculating the ray-fan through finite ray tracing. The MTFs of the lens illuminated by the homogeneous and inhomogeneous light beam are measured on the Gaussian image plane and compared with one another.

  • PDF

Analysis of the strain energy release rate for time-dependent delamination in multilayered beams with creep

  • Rizov, Victor I.
    • Advances in materials Research
    • /
    • v.11 no.1
    • /
    • pp.41-57
    • /
    • 2022
  • This paper is focused on delamination analysis of a multilayered inhomogeneous viscoelastic beam subjected to linear creep under constant applied stress. The viscoelastic model that is used to treat the creep consists of consecutively connected units. Each unit consists of one spring and two dashpots. The number of units in the model is arbitrary. The modulus of elasticity of the spring in each unit changes with time. Besides, the modulii of elasticity and the coefficients of viscosity change continuously along the thickness, width and length in each layer since the material is continuously inhomogeneous in each layer of the beam. A time-dependent solution to the strain energy release rate for the delamination is derived. A time-dependent solution to the J-integral is derived too. A parametric analysis of the strain energy release rate is carried-out by applying the solution derived. The influence of various factors such as creep, material inhomogeneity, the change of the modulii of elasticity with time and the number of units in the viscoelastic model on the strain energy release rate are clarified.

Natural Frequencies of a Beam on Inhomogeneous Foundation (비균질 지반위에 놓여있는 보의 고유진동수)

  • 김용철
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.69-77
    • /
    • 1992
  • The natural frequencies of a beam on elastic foundation are investigated in the present paper. The inhomogeneous elastic foundation can be modelled as a combination of distributed translational spring, rotational spring, intermediate supports and dampers. The natural frequencies and mode shapes of the system are obtained by using the Galerkin's method, and also compared with the results in the literature. Furthermore, the natural frequencies of the beam with elastically mounted masses, which can be used as vibration absorbers, are obtained by an efficient numerical scheme suggested in the present paper.

  • PDF

Photon dose calculation of pencil beam kernel based treatment planning system compared to the Monte Carlo simulation

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Kim, Hoi-Nam;Lee, Hyoung-Koo;Choe, Bo-Young;Yoon, Sei-Chul
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.291-293
    • /
    • 2002
  • Accurate dose calculation in radiation treatment planning is most important for successful treatment. Since human body is composed of various materials and not an ideal shape, it is not easy to calculate the accurate effective dose in the patients. Many methods have been proposed to solve the inhomogeneity and surface contour problems. Monte Carlo simulations are regarded as the most accurate method, but it is not appropriate for routine planning because it takes so much time. Pencil beam kernel based convolution/superposition methods were also proposed to correct those effects. Nowadays, many commercial treatment planning systems, including Pinnacle and Helax-TMS, have adopted this algorithm as a dose calculation engine. The purpose of this study is to verify the accuracy of the dose calculated from pencil beam kernel based treatment planning system Helax-TMS comparing to Monte Carlo simulations and measurements especially in inhomogeneous region. Home-made inhomogeneous phantom, Helax-TMS ver. 6.0 and Monte Carlo code BEAMnrc and DOSXYZnrc were used in this study. Dose calculation results from TPS and Monte Carlo simulation were verified by measurements. In homogeneous media, the accuracy was acceptable but in inhomogeneous media, the errors were more significant.

  • PDF