• Title/Summary/Keyword: Inhomogeneous Sound Speed

Search Result 4, Processing Time 0.016 seconds

3-D Near Field Localization Using Linear Sensor Array in Multipath Environment with Inhomogeneous Sound Speed (비균일 음속 다중경로환경에서 선배열 센서를 이용한 근거리 표적의 3차원 위치추정 기법)

  • Lee Su-Hyoung;Choi Byung-Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.184-190
    • /
    • 2006
  • Recently, Lee et al. have proposed an algorithm utilizing the signals from different paths by using bottom mounted simple linear array to estimate 3-D location of oceanic target. But this algorithm assumes that sound velocity is constant along depth of sea. Consequently, serious performance loss is appeared in real oceanic environment that sound speed is changed variously. In this paper, we present a 3-D near field localization algorithm for inhomogeneous sound speed. The proposed algorithm adopt localization function that utilize ray propagation model for multipath environment with linear sound speed profile(SSP), after that, the proposed algorithm searches for the instantaneous azimuth angle, range and depth from the localization cost function. Several simulations using linear SSP and non linear SSP similar to that of real oceans are used to demonstrate the performance of the proposed algorithm. The estimation error in range and depth is decreased by 100m and 50m respectively.

Separate Reconstruction of Speed of Sound, Density, and Absorption Parameters in Ultrasound Inverse Scattering Tomography

  • Kwon, Sung-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2E
    • /
    • pp.18-23
    • /
    • 1999
  • This paper proposes a method of separately determining three intrinsic mechanical parameters of an unknown object in the framework of ultrasound inverse scattering tomography. Those parameters are the speed of sound, density, and absorption whose values are given as the solution of an inhomogeneous Helmholtz wave equation. The separate reconstruction method is mathematically formulated, the integral equations are discretized using the sinc basis functions, and the Newton-Raphson method is adopted as a numerical solver in a measurement configuration where the object is insonified by an incident plane wave over 360˚ and the scattered field is measured by detectors arranged in a rectangular fashion around it. Two distinct frequencies are used to separate each parameter of three Gaussian objects that are either located at the same position or separately from each other. Computer simulation results show that the separate reconstruction method is able to separately reconstruct the three mechanical parameters. The absorption parameter turns out to be a little difficult to reconstruct as compared with the other two parameters.

  • PDF

Use of Time Reversal Techniques for Focusing of Ultrasonic Array Transducer Beams

  • Kim, Hak-Joon;Song, Sung-Jin;Thompson R. Bruce;Kim, Jae-Hee;Eom, Heung-Sup
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.3
    • /
    • pp.190-197
    • /
    • 2006
  • For enhancement of flaw detactability using array transducers, focusing of ultrasonic waves on a target in an inhomogeneous medium or through a complex geometry is important. But focusing can be strongly degraded by geometrical distortion of field radiated by the array transducers or by sound speed fluctuations in the propagating medium. In recent years, the time reversal technique has been proposed. Thus, in this paper, we describe the basic principal of the time reversal technique for focusing. Then, the implementation results of the time reversal technique for ultrasonic inspections using bulk waves and guided waves generated by array transducers are presented.

3-D Source Localization using Maximum Likelihood Estimate in Multi-path Environment with Inhomogeneous Sound Speed (비균일 음속 다중경로 환경에서 ML 추정기법을 이용한 표적의 3차원 위치추정)

  • Choi B. W.;Park D. H.;Kim J. S.;Shin C. H.;Lee J. H.;Lee K. K.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.155-160
    • /
    • 2004
  • 배열센서를 사용한 표적의 위치 추정은 레이다 및 소나에서 잘 알려진 문제이다. 최근에 Lee 등은 1 차원 수평 선배열 센서만을 사용하여 다중경로를 통해 들어오는 신호로부터 표적의 3 차원 위치를 추정하였다. 그러나 이 알고리즘에서 수중에서의 음속은 수심에 관계없이 일정하다고 가정하였기 때문에 음속이 수심에 따라 다양하게 변화하는 실제 수중환경에서는 그 추정성능이 현저히 저하된다. 따라서 본 논문에서는 표적의 거리, 깊이, 방위각으로 구성되는 3 차원 위치 추정을 위해 비균일 음속환경에서의 음파전달모델(ray propagation model)을 이용한 ML 기법(maximum likelihood estimation)을 적용하였으며 일정한 음속을 가정한 Lee 기법의 추정치를 초기값으로 한 탐색을 통해 ML 기법의 연산량을 감소시켰다.

  • PDF