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Abstract

This paper proposes a method of separately determining three intrinsic mechanical parameters of an unknown object in the 
framework of ultrasound inverse scattering tomography. Those parameters are the speed of sound, density, and absorption 
whose values are given as the solution of an inhomogeneous Helmholtz wave equation. The separate reconstruction method 
is mathematically formulated, the integral equations are discretized using the sine basis functions, and the Newton-Raphson 
method is adopted as a numerical solver in a measurement configuration where the object is insonitied by an incident plane 
wave over 360° and the scattered field is measured by detectors arranged in a rectangular fashion around it. Two distinct 
frequencies are used to separate each parameter of three Gaussian objects that are either located at the same position or 
separately from each other. Computer simulation results show that the separate reconstruction method is able to separately 
reconstruct the three mechanical parameters. The absorption parameter turns out to be a little difficult to reconstruct as 
compared with the other hyo parameters.

I. Introduction

Most of the work concerned with diffraction or inverse 
scattering tomographic techniques have modeled the tissue 
inhomogeneities as fluctuations of o미y the ultrasonic 
refractive index or, equivalently, sound speed about its 
average value [1-4]. A more realistic wave equation is 
described that considers the variable density and 
compressibility in [5, 6]. Norton [7] suggested a method 
for reconstructing separate images of the variations in 
density and compressibility within a weak scattering tissue 
sample from near field scattering measurements using 
only two long, rectangular transducer elements for 
broadband, plane wave illuminations. Devaney [8] 
obtained good separate reconstructions of the density and 
compressibility fluctuations in the noise-free case using 
the filtered backpropagation algorithm which is valid 
under the assumption of small or smooth perturbations. 
The above work falls into the category of the diffraction 
tomographic approach, which is poor in reconstruction 
quality and reconstructable contrast range as compared 
with the inverse scattering tomographic approach adopted
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in this paper [9,10, 12].
Berggren et al. [11] reconstructed separate images of 

speed of sound, density, and absorption through the 
inversion of exact model wave equations using the 
alternating variable algorithm. Since the object contrast up 
to which the Newton-Raphson (NR) method is capable of 
converging to a correct solution is larger than that of the 
alternating variable algorithm and the former is better in 
reconstruction quality than the latter [10], it is highly 
valuable to apply the NR method to obtain the exact 
inverse scattering solutions of the three intrinsic 
mechanical parameters of interest. In order to achieve this 
goal, at least two frequencies must be used to distinguish 
the frequency-independent speed of sound term from the 
frequency-dependent density term. The fact that the 
velocity dispersion in biological tissues is not strong needs 
to be utilized.

II. Problem Formulation

The acoustic wave equation for field fr/(r), considering 
the density p(r), is given by

寸萨+ k*爲饵)=k成点屈饵) (1) 
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where the complex scattering potential is of the following 
form [5]:

yE)={i-c3c#j-j2血#)/[以(凯}+(< 海)尹(所2广响

=%由+ K歲疗). ⑵

Here, r is the field point, co is the speed of sound in water, 
c(r) is the speed of sound in a medium, including water, j 
is the imaginary number, a(r) is the absorption,知 is the 
wave number given as «/co, is a frequency-dependent 
scale factor equal to co/» , and « and § are, respectively, 
the angular frequency and propagation direction of a plane 
wave. In subsequent sections,刀(尸)and /2(r) will refer to 
the first and second terms of /-(r), respectively.

Transforming (1) into the equivalent Lippmann- 
Schwinger integral equation through the use of Green's 
function method, and applying the method of moments 
with the sine basis functions and Dirac delta testing 
functions, we obtain (3a) at object grid points and (3b) at 
detector grid points:

扇(") =當)(*) + £[为。)+亢為(邛扁⑴(3a)

板)=£") + 虬020)1么(以％(，源) (％)

i

where the superscripts (in) and (sc) are short for incident 
and scattered, respectively, and n and m each are indices 
indicating a point on a two-dimensional grid. Both C and 
D are coefficients resulting from the use of the sine basis 
and impulse testing functions in a twc-dimensicnal 
Green's function [12]. Equations (3a) and (3b) are called 
field and detector ones,, respectively, since the former is 
associated with the total field and the latter, the detector 
field. Transposing the above field and detector equations, 
we get the following field and detector residual equations 
(4a) and (4b):

= f雛n)』(n) + 目花)+W)lf^(i)Q(n;i) (4a)

炉=當+虬枷)LS(g伽;D (牝)

where the two superscripts {fid) and (det) stand for field 
and detector, respectively. The above equations form a 
nonlinear system of equations which will be solved using 
the NR method. Taking the first-order Taylor series 

expansions of both (4a) and (4b) and setting each of them 
to zero results in the following NR equations:

-斯"S)=£為。)4(冲)0沾)+虬府0]

+£{-$(槌)+[冲 + 5。)]%(河)區0) (5a)

F端(m) = -£•原。)[明 0) + 气勿2(讶

-£纳(i) + 匚1負)皿(m;i)}%(i) (5b)

where d(混)is the Kronecker delta function, which equals 
unity if i=n and zero otherwise. In addition, unknowns , 8 
y血),^2(n) and denote the NR steps for the speed
of sound and absorption term in the scattering potential, 
the density term in the scattering potential, and the total 
field, respectively. Quantities yi(n) , /i(n) , andfi^(n) 
are updated by an amount equal to the NR steps just 
obtained from both (5a) and (5b), i.e.,时(zi), b血)and 
必 *(〃)，respectively, until there is no further improvement 
in the iterates.

Now we reconstruct the three ultimate scattering 
potential constituent parameters, i.e., the speed of sound, 
density, and absorption, using only two frequencies. 
Assuming the absorption varies linearly with frequency as 
a(")=#(疝M the scattering potential at an angular 
frequency « can be written as

rB(n) = (1-ko /c(n)]2 + &为(《)}-丿2疏知)/由). (6)

The absoqjtion coefficient P(n) can readily be obtained 
by taking the imaginary part of (6), once the speed of 
sound c(ri) has been determined. We now proceed with 
the determination of the remaining two parameters, i.e., 
both the speed of sound and density. Letting /•!(«) and * 
2(n) denote the scattering potentials reconstructed using 
two angular frequencies »i and respectively, based on 
the NR method, we obtain the following system of two 
linear algebraic equations in two unknowns and / 

2(끼 :

Re[ya)i (n)] = 1 - [c0/c(n)]2 + Koj^Cn) (7 a)

Re[力 2(〃)] = 1 一【% /c(히]2 + Ka)2y2(n), (7b)

The set of (7 a) and (7b) can be solved for c(n) and 72(/1) to 
yield the speed of sound teim and the density-related term 
as follows:
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C(〃) 드 1- ' I (8)

2 (Wag(%W)고
(9)

Since the left-hand side of involves the Laplacian, it 
should be solved again to reconstruct the density itself.

■ 1/2
Letting p (n)=u(n), we get

V2w(n) = u(n)y2(n). (10)

Taking the finite-difference approximation of the 
Laplacian operator W with the grid spacing h leads to a 
linear system of equations subject to the boundary 
condition which requires that u(n) at the detector grid 
points be unity, since the density of water at those grid 
points equals unity.

III. Numerical Results

All computer simulations are performed in single 
precision arithmetic on a Pentium II 233MHz PC for a 
square imaging grid of size 32 x 32 pixels on the 
rectangular periphery of which the ultrasound detectors 
are positioned. The measurement geometry is shown in 
Figure 1 where an object immersed in water is irradiated 
by an incident plane wave whose propagation direction is 
varied 32 times in equiangle steps over 360° and the 
scattered field is measured in detectors located on the four 
sides of the square.

The speed co of sound in the homogeneous embedding

Figure 1. Measurement setup for scattered field where the plane 
wave is incident upon the scattering object at an angle of 
0° with respect to the x axis.

medium of water is set to 1500 m/s, and the scattered field 
is obtained by solving (3b). For each of two frequencies / 
= 1 MHz and 力 느 0.9MHz, reconstructions are repeated 
using the NR method where ten linearizations are done 
with the number of inner iterations set to 100. The 
imaging grid is discretized at intervals of one quarter of 
the wavelength corresponding to the higher frequency / = 
1MHz; therefore, the pixel widt h in both x and y 
directions is equal to 0.0375cm. The normalized mean 
square reconstruction errors in percent, c«, p«, and 位 for 
the speed of sound, the density, and the absorption 
coefficient, respectively, are defined as follows:

匕 = {孕（，02舟/歹싸 ioo% (lla)

= 100% (lib)

t/2
100% (11c)段 어)-依小］2/£02("}

where c(n),夕3), and 加)denote the original speed of 
sound, density, and absorption coefficients, respectively, 
and c(n),p(n),and^(w) denote the reconstructed speed of 

sound, density, and absorption coefficients, respectively. 
Three overlapped and separated Gaussian profile objects 
each are chosen as the scattering objects where the latter 
are roughly four times as narrow in the region of support 
as the former. Table 1 lists the reconstruction errors in 
percent for various combinations of the speed of sound, 
density, and absorption coefficient. Both object types I and 
II correspond to the overlapped Gaussian object case, 
whereas both object types III and IV, the separated 
Gaussian object case. The parameters c, p、and fl are, 
respectively, in units of 103 cm/s, g/cm\ and dB/cm/MHz.

Table 1. Reconstruction errors in percent for various object 
contrasts.

Object Type c 0 6 c. P. 0.
I 1.579 13 0.8 0.009 0.733 0.952
II 1.429 1.4 0.7 0.009 0.628 0.047
m 1.667 1.3 0.8 0.070 0.593 5.971
IV 1.364 2.0 2.0 0.078 0.631 6.530

The left and right panels in Figure 2 represent isometric 
plots of the original and reconstructed profiles of the three 
parameters for the case of object type I, respectively. From 
top to bottom, the speed of sound, density, and absorption 
coefficients are displayed in units of cm/s, g/cm： and in 

-i .)
cm Hz , respectively. Figure 3 shows the original (square)
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Figure 2. Original (left panels) and reconstructed (right panels) speed of sound, density, and absorption from top to bottom for the case of 
overlapped profiles.
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Figure 3. Companson of the onginal (square) and reconstructed 
(triangle) center line profiles of (a) speed of sound, (b) 
density, and (c) absorption.

and reconstructed (triangle) center line profiles of (a) the 
speed of sound, (b) density, and (c) absorption coefficients 
from top to bottom. We can see from the figures that the 
separate reconstruction method is valid and has good 
performance.

Numerical simulation results are also presented for the
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Figure 4. Original (left panels) and reconstructed (right panels) speed of sound, density, and absorption from top to 
bottom for the case of separated profiles.
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Figure 5. Comparison of the original (square) and reconstructed 
(triangle) center line profiles of speed of sound (right), 
density (left), and absorption (middle) where the values 
are each normalized.

case of object type III. Shown in Figure 4 are isometric 
plots of the three original (left) and reconstructed (right) 
parameters. The reconstructed profiles on the right hand 
side show very small fluctuations in the background. The 
original (square) and reconstructed (triangle) center line 
profiles are superimposed together after normalization for 
the sake of comparison in Figure 5. From left to right, 

three Gaussian shapes each correspond to the density, 
absorption, and speed of sound distributions. It can be 
clearly seen that they match very well.

IV. Conclusions

In this paper a method of separately reconstructing the 
speed of sound, density, and absorption with two distinct 
frequencies is mathematically formulated and solved using 
the NR method, and its good performance is demonstrated 
through computer simulations. Two types of Gaussian 
objects are used as the scattering potential. One is of the 
overlapped Gaussian type, and the other is of the 
separately located Gaussian type. The reconstruction 
quality of the absorption is not as good as that of the speed 
of sound and density. This is due to the fact that as the 
absorption increases, the received scattered field 
decreases. When the object has sharp edges, the density 
reconstruction shows poor performance, because the 
Laplacian operation is involved.
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