• Title/Summary/Keyword: Inhibitory Neuron

Search Result 60, Processing Time 0.03 seconds

A ROCK Inhibitor Blocks the Inhibitory Effect of Chondroitin Sulfate Proteoglycan on Morphological Changes of Mesenchymal Stromal/Stem Cells into Neuron-Like Cells

  • Lim, Hee-Suk;Joe, Young Ae
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.447-453
    • /
    • 2013
  • Chondroitin sulfate proteoglycan (CSPG) inhibits neurite outgrowth of various neuronal cell types, and CSPG-associated inhibition of neurite outgrowth is mediated by the Rho/ROCK pathway. Mesenchymal stromal/stem cells (MSCs) have the potential to differentiate into neuron-like cells under specific conditions and have been shown to differentiate into neuron-like cells by co-treatment with the ROCK inhibitor Y27632 and the hypoxia condition mimicking agent $CoCl_2$. In this study, we addressed the hypothesis that a ROCK inhibitor might be beneficial to regenerate neurons during stem cell therapy by preventing transplanted MSCs from inhibition by CSPG in damaged tissues. Indeed, dose-dependent inhibition by CSPG pretreatment was observed during morphological changes of Wharton's jelly-derived MSCs (WJ-MSCs) induced by Y27632 alone. The formation of neurite-like structures was significantly inhibited when WJ-MSCs were pre-treated with CSPG before induction under Y27632 plus $CoCl_2$ conditions, and pretreatment with a protein kinase C inhibitor reversed such inhibition. However, CSPG treatment resulted in no significant inhibition of the WJ-MSC morphological changes into neuron-like cells after initiating induction by Y27632 plus $CoCl_2$. No marked changes were detected in expression levels of neuronal markers induced by Y27632 plus $CoCl_2$ upon CSPG treatment. CSPG also blocked the morphological changes of human bone marrow-derived MSCs into neuron-like cells under other neuronal induction condition without the ROCK inhibitor, and Y27632 pre-treatment blocked the inhibitory effect of CSPG. These results suggest that a ROCK inhibitor can be efficiently used in stem cell therapy for neuronal induction by avoiding hindrance from CSPG.

A Biological Fuzzy Multilayer Perceptron Algorithm

  • Kim, Kwang-Baek;Seo, Chang-Jin;Yang, Hwang-Kyu
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.3
    • /
    • pp.104-108
    • /
    • 2003
  • A biologically inspired fuzzy multilayer perceptron is proposed in this paper. The proposed algorithm is established under consideration of biological neuronal structure as well as fuzzy logic operation. We applied this suggested learning algorithm to benchmark problem in neural network such as exclusive OR and 3-bit parity, and to digit image recognition problems. For the comparison between the existing and proposed neural networks, the convergence speed is measured. The result of our simulation indicates that the convergence speed of the proposed learning algorithm is much faster than that of conventional backpropagation algorithm. Furthermore, in the image recognition task, the recognition rate of our learning algorithm is higher than of conventional backpropagation algorithm.

EEG model by statistical mechanics of neocortical interaction

  • Park, J.M.;Whang, M.C.;Bae, B.H.;Kim, S.Y.;Kim, C.J.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.15-27
    • /
    • 1997
  • Brain potential is described using the mesocolumnar activity defined by averaged firings of excitatory and inhibitory neuron of neocortex. Lagrangian is constructed based on SMNI(Statistical Mechanics of Neocortical Interaction) and then Euler Lagrange equation is obtained. Excitatory neuron firing is assumed to be amplitude- modulated dominantly by the sum of two modes of frequency .omega. and 2 .omega. . Time series of this neuron firing is calculated numerically by Euler Lagrangian equation. I .omega. L related to low frequency distribution of power spectrum, I .omega. H hight frequency, and Sd(standard deviation) were introduced for the effective extraction of the dynamic property in the simulated brain potential. The relative behavior of I .omega. L, I .omega. H, and Sd was found by parameters .epsilon. and .gamma. related to nonlinearity and harmonics respectively. Experimental I .omega L, I .omega. H, and Sd were obtained from EEG of human in rest state and of canine in deep sleep state and were compared with theoretical ones.

  • PDF

Differential Actions of Intracerebroventricular Opioid Receptor Agonists on the Activity of Dorsal Horn Neurons in the Cat Spinal Cord (Opioid 수용체 효능제의 뇌실 내 주입이 고양이 척수후각세포의 활성에 미치는 영향)

  • 문태상;오우택
    • YAKHAK HOEJI
    • /
    • v.43 no.4
    • /
    • pp.411-418
    • /
    • 1999
  • Intracerebroventricular (ICV) infusion of morphine (MOR) produces strong analgesia in man and animals. The analgesic effect is thought to be mediated by the centrifugal inhibitory control. But neural mechanisms of the analgesic effect of ICV morphine are not well understood. In the present study, we found that ICV MOR had dual actions on the activity of dorsal horn heurons: it produced both inhibition and excitation of dorsal horn neurons. Since MOR exerts its action via three different types of opioid receptors, we further sought to investigate if there are differential effects of opioid receptor agonists on dorsal horn neurons when administered intracerebroventricularly. Effects of ICV MOR were tested in 28 dorsal horn neurons of the spinal cord in the cat. ICV MOR inhibited, excited and did not affect the heat responses of dorsal horn neurons. ICV DAMGO and DADLE, $\mu$- and $\delta$-opioid agonist, respectively, exhibited the excitation of dorsal horn neurons. In contract, U-50488, a k-opioid agonist, exhibited both the inhibition and excitation of dorsal horn neurons. These results suggest that opioid receptors have different actions on activity of dorsal horn neuron and that the inhibitory action of k-opioid agonist may subserve the analgesia often produced by ICV MOR.

  • PDF

Effects of Electrical Stimulation of Brainstem Nuclei on Dorsal Horn Neuron Responses to Mechanical Stimuli in a Rat Model of Neuropathic Pain (신경병증성 통증 모델 쥐에서 뇌간 핵의 전기자극이 후각세포의 기계자극에 대한 반응도에 미치는 영향)

  • Leem Joong-Woo;Choi Yoon;Gwak Young-Seob;Nam Taik-Sang;Paik Kwang-Se
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.3
    • /
    • pp.241-249
    • /
    • 1997
  • The aim of the present study is to examine the brainstem sites where the electrical stimulation produces a suppression of dorsal horn neuron responses of neuropathic rats. An experimental neuropathy was induced by a unilateral ligation of L5-L6 spinal nerves of rats. Ten to 15 days after surgery, the spinal cord was exposed and single-unit recording was made on wide dynamic range (WDR) neurons in the dorsal horn. Neuronal responses to mechanical stimuli applied to somatic receptive fields were examined to see if they were modulated by electrical stimulation of various brainstem sites. Electrical stimulation of periaqueductal gray (PAG), n. raphe magnus (RMg) or n. reticularis gigantocellularis (Gi) significantly suppressed responses of WDR neurons -to both noxious and non-noxious stimuli. Electrical stimulation of other brainstem areas, such as locus coeruleus. (LC) and n. reticularis paragigantocellularis lateralis (LPGi), produced little or no suppression. Microinjection of morphine into PAG, RMg, or Gi also produced a suppression as similar pattern to the case of electrical stimulation, whereas morphine injection into LC or LPGi exerted no effects. The results suggest that PAG, NRM and Gi are the principle brainstem nuclei involved in the descending inhibitory systems responsible for the control of neuropathic pain. These systems are likely activated by endogenous opioids and exert their inhibitory effect by acting on WDR neurons in the spinal cord.

  • PDF

Physiological Fuzzy Neural Networks for Image Recognition (영상 인식을 위한 생리학적 퍼지 신경망)

  • Kim, Kwang-Baek;Moon, Yong-Eun;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.2
    • /
    • pp.81-103
    • /
    • 2005
  • The Neuron structure in a nervous system consists of inhibitory neurons and excitory neurons. Both neurons are activated by agonistic neurons and inactivated by antagonist neurons. In this paper, we proposed a physiological fuzzy neural network by analyzing the physiological neuron structure in the nervous system. The proposed structure selectively activates the neurons which go through a state of excitement caused by agonistic neurons and also transmit the signal of these neurons to the output layers. The proposed physiological fuzzy neural networks based on the nervous system consists of a input player, and the hidden layer which classifies features of learning data, and output layer. The proposed fuzzy neural network is applied to recognize bronchial squamous cell carcinoma images and car plate images. The result of the experiments shows that the learning time, the convergence, and the recognition rate of the proposed physiological fuzzy neural networks outperform the conventional neural networks.

  • PDF

Involvement of NMDA Receptor and L-type Calcium Channel in the Excitatory Action of Morphine

  • Koo, Bon-Seop;Shin, Hong-Kee;Kang, Suk-Han;Jun, Jong-Hun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.5
    • /
    • pp.241-246
    • /
    • 2002
  • We studied the excitatory action of morphine on the responses of dorsal horn neuron to iontophoretic application of excitatory amino acid and C-fiber stimulation by using the in vivo electrophysiological technique in the rat. In 137 of the 232 wide dynamic range (WDR) neurons tested, iontophoretic application of morphine enhanced the WDR neuron responses to N-methyl-D-aspartate (NMDA), kainate, and graded electrical stimulation of C-fibers. Morphine did not have any excitatory effects on the responses of low threshold cells. Morphine-induced excitatory effect at low ejection current was naloxone-reversible and reversed to an inhibitory action at high ejection current. NMDA receptor, calcium channel and intracellular $Ca^{2+}$ antagonists strongly antagonized the morphine-induced excitatory effect. These results suggest that changes in intracellular ionic concentration, especially $Ca^{2+},$ play an important role in the induction of excitatory effect of morphine in the rat dorsal horn neurons.

A Study on the Control of Recognition Performance and the Rehabilitation of Damaged Neurons in Multi-layer Perceptron (다층 퍼셉트론으 인식력 제어와 복원에 관한 연구)

  • 박인정;장호성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.2
    • /
    • pp.128-136
    • /
    • 1991
  • A neural network of multi layer perception type, learned by error back propagation learning rule, is generally used for the verification or clustering of similar type of patterns. When learning is completed, the network has a constant value of output depending on a pattern. This paper shows that the intensity of neuron's out put can be controlled by a function which intensifies the excitatory interconnection coefficients or the inhibitory one between neurons in output layer and those in hidden layer. In this paper the value of factor in the function to control the output is derived from the know values of the neural network after learning is completed And also this paper show that the amount of an increased neuron's output in output layer by arbitary value of the factor is derived. For the applications increased recognition performance of a pattern than has distortion is introduced and the output of partially damaged neurons are first managed and this paper shows that the reduced recognition performance can be recovered.

  • PDF

Control of Nonlinear System by Multiplication and Combining Layer on Dynamic Neural Networks (동적 신경망의 층의 분열과 합성에 의한 비선형 시스템 제어)

  • Park, Seong-Wook;Lee, Jae-Kwan;Seo, Bo-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.419-427
    • /
    • 1999
  • We propose an algorithm for obtaining the optimal node number of hidden units in dynamic neural networks. The dynamic nerual networks comprise of dynamic neural units and neural processor consisting of two dynamic neural units; one functioning as an excitatory neuron and the other as an inhibitory neuron. Starting out with basic network structure to solve the problem of control, we find optimal neural structure by multiplication and combining dynamic neural unit. Numerical examples are presented for nonlinear systems. Those case studies showed that the proposed is useful is practical sense.

  • PDF

Face Tracking Method based on Neural Oscillatory Network Using Color Information (컬러 정보를 이용한 신경 진동망 기반 얼굴추적 방법)

  • Hwang, Yong-Won;Oh, Sang-Rok;You, Bum-Jae;Lee, Ji-Yong;Park, Mig-Non;Jeong, Mun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.40-46
    • /
    • 2011
  • This paper proposes a real-time face detection and tracking system that uses neural oscillators which can be applied to access regulation system or control systems of user authentication as well as a new algorithm. We study a way to track faces using the neural oscillatory network which imitates the artificial neural net of information handing ability of human and animals, and biological movement characteristic of a singular neuron. The system that is suggested in this paper can broadly be broken into two stages of process. The first stage is the process of face extraction, which involves the acquisition of real-time RGB24bit color video delivering with the use of a cheap webcam. LEGION(Locally Excitatory Globally Inhibitory)algorithm is suggested as the face extraction method to be preceded for face tracking. The second stage is a method for face tracking by discovering the leader neuron that has the greatest connection strength amongst neighbor neuron of extracted face area. Along with the suggested method, the necessary element of face track such as stability as well as scale problem can be resolved.