• 제목/요약/키워드: Inhibitor of ${\kappa}B$ kinase

검색결과 99건 처리시간 0.038초

Acrolein with an α,β-unsaturated Carbonyl Group Inhibits LPS-induced Homodimerization of Toll-like Receptor 4

  • Lee, Jeon-Soo;Lee, Joo Young;Lee, Mi Young;Hwang, Daniel H.;Youn, Hyung Sun
    • Molecules and Cells
    • /
    • 제25권2호
    • /
    • pp.253-257
    • /
    • 2008
  • Acrolein is a highly electrophilic ${\alpha},{\beta}$-unsaturated aldehyde present in a number of environmental sources, especially cigarette smoke. It reacts strongly with the thiol groups of cysteine residues by Michael addition and has been reported to inhibit nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) activation by lipopolysaccharide (LPS). The mechanism by which it inhibits $NF-{\kappa}B$ is not clear. Toll-like receptors (TLRs) play a key role in sensing microbial components and inducing innate immune responses, and LPS-induced dimerization of TLR4 is required for activation of downstream signaling pathways. Thus, dimerization of TLR4 may be one of the first events involved in activating TLR4-mediated signaling pathways. Stimulation of TLR4 by LPS activates both myeloid differential factor 88 (MyD88)- and TIR domain-containing adapter inducing $IFN{\beta}$ (TRIF)-dependent signaling pathways leading to activation of $NF-{\kappa}B$ and IFN-regulatory factor 3 (IRF3). Acrolein inhibited $NF-{\kappa}B$ and IRF3 activation by LPS, but it did not inhibit $NF-{\kappa}B$ or IRF3 activation by MyD88, inhibitor ${\kappa}B$ kinase $(IKK){\beta}$, TRIF, or TNF-receptor-associated factor family member-associated $NF-{\kappa}B$ activator (TANK)-binding kinase 1 (TBK1). Acrolein inhibited LPS-induced dimerization of TLR4, which resulted in the down-regulation of $NF-{\kappa}B$ and IRF3 activation. These results suggest that activation of TLRs and subsequent immune/inflammatory responses induced by endogenous molecules or chronic infection can be modulated by certain chemicals with a structural motif that enables Michael addition.

PC 12 세포의 Apoptosis에 대한 성향정기산의 방어효과 및 작용기전 연구 (The Neuroprotective Mechanism of Sunghyangjunggisan Water Extracts on Apoptosis of PC 12 Cell)

  • 최철원;이인;이기상;조남수;문병순
    • 대한한의학회지
    • /
    • 제23권1호
    • /
    • pp.50-60
    • /
    • 2002
  • Objectives: Sunghyangjunggisan (SHJS) is a commonly prescribed drug with a wide neuropharmacological spectrum. The water extracts of SHJS were found to be protective against neurotoxicity elicited by deprivation of serum and glucose. Methods: The morphological examination and Hoechst staining of nucleus also clearly showed that the extracts attenuated the cell shrinkage, membrane blebbing, representing typical neuronal apoptotic phenomena and nucleosome-sized fragmentation under the microscope in PC 12 rat pheochromocytoma cells. Results: Activation of protein kinase A (PKA) with dibutyl-cAMP and forskolin also protected during glucose deprivation, although it was not additive with the effect provided by phorbol ester. Interestingly, treatment with the protein kinase A inhibitor, KT5720, was not neuroprotective in the presence of SHJS. Electrophoretic mobility shift assays were used to characterize the neuroprotective binding of nuclear proteins to consensus sequences for AP-l, nuclear factor kappa B ($NF-{\kappa}B$) after glucose deprivation. When PC 12 cells are induced to undergo apoptosis by serum deprivation, AP-l and $NF-{\kappa}B$ DNA binding activity transiently increases to a slight degree. This stimulation is blocked by the water extracts of SHJS. The site of action of the drugs appeared to involve specific inhibition of AP-1 and nuclear factor kB binding activity. Conclusions: Taken together, these results suggested the possibility that the extracts of SHJS might provide a neurotrophic-like activity in PC 12 cells.

  • PDF

Aspirin inhibits lipopolysaccharide-induced COX-2 expression and PGE2 production in porcine alveolar macrophages by modulating protein kinase C and protein tyrosine phosphatase activity

  • Duan, Yuzhong;Chen, Fanglin;Zhang, Anmei;Zhu, Bo;Sun, Jianguo;Xie, Qichao;Chen, Zhengtang
    • BMB Reports
    • /
    • 제47권1호
    • /
    • pp.45-50
    • /
    • 2014
  • Aspirin has been demonstrated to be effective in inhibiting COX-2 and $PGE_2$ in Alveolar macrophages (AMs). However, the mechanisms have not been fully understood. In the present study, we found that pretreatment with aspirin inhibited LPS-induced COX-2 and$PGE_2$ upregulation, $I{\kappa}B{\alpha}$ degradation, NF-${\kappa}B$ activation and the increase of PKC activity, but elevated LPS-induced the decrease of PTP activity. The PKC inhibitor calphostin C dramatically reduced the COX-2 mRNA and $PGE_2$ levels, but the PTP inhibitor peroxovanadium (POV) significantly increased the COX-2 mRNA and$PGE_2$ levels. Furthermore, the PTP inhibitor mitigated the inhibitory effect of aspirin on COX-2 and$PGE_2$ upregulation and NF-${\kappa}B$ activation, whereas the PKC inhibitor enhanced the inhibitory effects of aspirin on the production of COX-2 and$PGE_2$. Our data indicate a novel mechanism by which aspirin acts as a potent anti-inflammatory agent in alveolus macrophages and ALI.

Trichostatin A Protects Liver against Septic Injury through Inhibiting Toll-Like Receptor Signaling

  • Kim, So-Jin;Park, Jin-Sook;Lee, Do-Won;Lee, Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • 제24권4호
    • /
    • pp.387-394
    • /
    • 2016
  • Sepsis, a serious clinical problem, is characterized by a systemic inflammatory response to infection and leads to organ failure. Toll-like receptor (TLR) signaling is intimately implicated in hyper-inflammatory responses and tissue injury during sepsis. Histone deacetylase (HDAC) inhibitors have been reported to exhibit anti-inflammatory properties. The aim of this study was to investigate the hepatoprotective mechanisms of trichostatin A (TSA), a HDAC inhibitor, associated with TLR signaling pathway during sepsis. The anti-inflammatory properties of TSA were assayed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Polymicrobial sepsis was induced in mice by cecal ligation and puncture (CLP), a clinically relevant model of sepsis. The mice were intraperitoneally received TSA (1, 2 or 5 mg/kg) 30 min before CLP. The serum and liver samples were collected 6 and 24-h after CLP. TSA inhibited the increased production of tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6 in LPS-stimulated RAW264.7 cells. TSA improved sepsis-induced mortality, attenuated liver injury and decreased serum TNF-${\alpha}$ and IL-6 levels. CLP increased the levels of TLR4, TLR2 and myeloid differentiation primary response protein 88 (MyD88) protein expression and association of MyD88 with TLR4 and TLR2, which were attenuated by TSA. CLP increased nuclear translocation of nuclear factor kappa B and decreased cytosolic inhibitor of kappa B ($I{\kappa}B$) protein expression, which were attenuated by TSA. Moreover, CLP decreased acetylation of $I{\kappa}B$ kinase (IKK) and increased association of IKK with $I{\kappa}B$ and TSA attenuated these alterations. Our findings suggest that TSA attenuates liver injury by inhibiting TLR-mediated inflammatory response during sepsis.

Aggregatibacter actinomycetemcomitans Strongly Stimulates Endothelial Cells to Produce Monocyte Chemoattractant Protein-1 and Interleukin-8

  • Choi, Eun-Kyoung;Kang, Mi-Sun;Oh, Byung-Ho;Kim, Sang-Yong;Kim, So-Hee;Kang, In-Chol
    • International Journal of Oral Biology
    • /
    • 제37권3호
    • /
    • pp.137-145
    • /
    • 2012
  • Aggregatibacter actinomycetemcomitans is the most important etiologic agent of aggressive periodontitis and can interact with endothelial cells. Monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8) are chemokines, playing important roles in periodontal pathogenesis. In our current study, the effects of A. actinomycetemcomitans on the production of MCP-1 and IL-8 by human umbilical vein endothelial cells (HUVEC) were investigated. A. actinomycetemcomitans strongly induced the gene expression and protein release of both MCP-1 and IL-8 in a dose- and time-dependent manner. Dead A. actinomycetemcomitans cells were as effective as live bacteria in this induction. Treatment of HUVEC with cytochalasin D, an inhibitor of endocytosis, did not affect the mRNA up-regulation of MCP-1 and IL-8 by A. actinomycetemcomitans. However, genistein, an inhibitor of protein tyrosine kinases, substantially inhibited the MCP-1 and IL-8 production by A. actinomycetemcomitans, whereas pharmacological inhibition of each of three members of mitogen-activated protein (MAP) kinase family had little effect. Furthermore, gel shift assays showed that A. actinomycetemcomitans induces a biphasic activation (early at 1-2 h and late at 8-16 h) of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and an early brief activation (0.5-2 h) of activator protein-1 (AP-1). Activation of canonical NF-${\kappa}B$ pathway ($I{\kappa}B$ kinase activation and $I{\kappa}B-{\alpha}$ degradation) was also demonstrated in these experiments. Although lipopolysaccharide from A. actinomycetemcomitans also induced NF-${\kappa}B$ activation, this activation profile over time differed from that of live A. actinomycetemcomitans. These results suggest that the expression of MCP-1 and IL-8 is potently increased by A. actinomycetemcomitans in endothelial cells, and that the viability of A. actinomycetemcomitans and bacterial internalization are not required for this effect, whereas the activation of protein tyrosine kinase(s), NF-${\kappa}B$, and AP-1 appears to play important roles. The secretion of high levels of MCP-1 and IL-8 resulting from interactions of A. actinomycetemcomitans with endothelial cells may thus contribute to the pathogenesis of aggressive periodontitis.

Anti-allergic Effect of Seungmagalgeun-tang through Suppression of NF-${\kappa}B$ and p38 Mitogen-Activated Protein Kinase Activation in the RBL-2H3 Cells

  • Lyu, Ji-Hyo;Lyu, Sun-Ae;Yoon, Hwa-Jung;Ko, Woo-Shin
    • 동의생리병리학회지
    • /
    • 제22권6호
    • /
    • pp.1572-1578
    • /
    • 2008
  • In previous report, Seungmagalgeun-tang (SGT) could exert its anti-inflammatory actions in the BV-2 microglial cells. However, study on the anti-inflammatory effect of SGT in mast cells has not been identified. Therefore, we examined on the anti-inflammatory effect of SGT on the phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-induced rat basophilic leukemia (RBL-2H3) cells. SGT inhibited the release of ${\beta}$-hexosaminidase and secretion and expression of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-4 on RBL-2H3 cells, without affecting cell viability. The protein expression level of nuclear factor (NF)-${\kappa}B$ (p65) was decreased in the nucleus by SGT. In addition, SGT suppressed the degradation of inhibitory protein $I{\kappa}B-{\alpha}$ protein, the activation of p38 mitogen-activated protein kinase (MAPK), and the expressions of cyclooxygenase (COX)-2 mRNA and protein level in RBL-2H3 cells. These results suggest that SGT could be involved anti-allergic effect by control of NF-${\kappa}B$ (p65) translocation into the nucleus through inhibition of $I{\kappa}B-{\alpha}$ degradation and suppression of COX-2 expression.

Curcumin Alleviates Dystrophic Muscle Pathology in mdx Mice

  • Pan, Ying;Chen, Chen;Shen, Yue;Zhu, Chun-Hua;Wang, Gang;Wang, Xiao-Chun;Chen, Hua-Qun;Zhu, Min-Sheng
    • Molecules and Cells
    • /
    • 제25권4호
    • /
    • pp.531-537
    • /
    • 2008
  • Abnormal activation of nuclear factor kappa B ($NF-{\kappa}B$) probably plays an important role in the pathogenesis of Duchenne's muscular dystrophy (DMD). In this report, we evaluated the efficacy of curcumin, a potent $NF-{\kappa}B$ inhibitor, in mdx mice, a mouse model of DMD. We found that it improved sarcolemmic integrity and enhanced muscle strength after intraperitoneal (i.p.) injection. Histological analysis revealed that the structural defects of myofibrils were reduced, and biochemical analysis showed that creatine kinase (CK) activity was decreased. We also found that levels of tumor necrosis factor alpha ($TNF-\alpha$), interleukin-1 beta ($IL-1\beta$) and inducible nitric oxide synthase (iNOS) in the mdx mice were decreased by curcumin administration. EMSA analysis showed that $NF-{\kappa}B$ activity was also inhibited. We thus conclude that curcumin is effective in the therapy of muscular dystrophy in mdx mice, and that the mechanism may involve inhibition of $NF-{\kappa}B$ activity. Since curcumin is a non-toxic compound derived from plants, we propose that it may be useful for DMD therapy.

조골세포내 PDE4에 의한 PTH 신호의 음성적 조절 (The Negative Role of PDE4 on PTH-induced Signaling in Osteoblasts)

  • 박효정;노아롱새미;이정민;임미정
    • 약학회지
    • /
    • 제54권5호
    • /
    • pp.410-415
    • /
    • 2010
  • We explored the role of phosphodiesterase 4 (PDE4) on parathyroid (PTH)-induced signaling in osteoblasts. PTH was shown to increase the activity of PDE, mainly PDE4, in osteoblasts, which is partly attributable to elevated PDE4B and PDE4D mRNA expression. The use of PDE4 inhibitor strengthened the PTH-induced extracellular signal-regulated kinase (ERK) and p38 MAP kinase (MAPK) activation. Furthermore, the PDE4 inhibitor stimulated PTH-induced receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) expression in osteoblasts, which in turn increased osteoclast formation. Taken together, these data suggest the negative role of PDE4 on PTH-induced signaling in osteoblasts.

Nuclear Factor-${\kappa}B$ Dependent Induction of TNF-${\alpha}$ and IL-$1{\beta}$ by the Aggregatibacter actinomycetemcomitans Lipopolysaccharide in RAW 264.7 Cells

  • Na, Hee Sam;Jeong, So Yeon;Park, Mi Hee;Kim, Seyeon;Chung, Jin
    • International Journal of Oral Biology
    • /
    • 제39권1호
    • /
    • pp.15-22
    • /
    • 2014
  • Aggregatibacter actinomycetemcomitans is an important pathogen in the development of localized aggressive periodontitis. Lipopolysaccharide (LPS) is a virulent factor of periodontal pathogens that contributes to alveolar bone loss and connective tissue degradation in periodontal disease. Our present study was designed to investigate the cytokine expression and signaling pathways regulated by A. actinomycetemcomitans LPS (Aa LPS). Cytokine gene expression profiling in RAW 264.7 cells was performed by microarray analyses. The cytokine mRNA and protein levels and related signaling pathways induced by Aa LPS were measured by RT-PCR, ELISA and western blotting. Microarray results showed that Aa LPS strongly induced the expression of NF-${\kappa}B$, NF-${\kappa}B$-related genes, inflammatory cytokines, TNF-${\alpha}$ and IL-$1{\beta}$ in RAW 264.7 cells. NF-${\kappa}B$ inhibitor pretreatment significantly reduced the levels of TNF-${\alpha}$ and IL-$1{\beta}$ mRNA and protein. In addition, the Aa LPS-induced TNF-${\alpha}$ and IL-$1{\beta}$ expression was inhibited by p38/JNK MAP kinase inhibitor pretreatment. These results show that Aa LPS stimulates TNF-${\alpha}$ and IL-$1{\beta}$ expression through NF-${\kappa}B$ and p38/JNK activation in RAW 264.7 cells, suggesting the essential role of this pathway in the pathogenesis of localized aggressive periodontitis.

The Relaxing Effect of ${\alpha}$-Defensin 1 on the Adrenergic Responses of Rat Bladder

  • Lee, Shin-Young;Kim, Don-Kyu;Kim, Kyung-Do;Myung, Soon-Chul;Lee, Moo-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권3호
    • /
    • pp.143-147
    • /
    • 2011
  • Defensins, cysteine-rich cationic polypeptides released from neutrophils, are known to have powerful antimicrobial properties. In this study, we sacrificed 30 rats to investigate the effects of ${\alpha}$-defensin 1 on detrusor muscle contractions in isolated rat bladder. From the experiments we found relaxing effects of ${\alpha}$-defensin 1 on the contractions induced by phenylephrine (PE) but not by bethanechol (BCh) in the detrusor smooth muscles. To determine the mechanisms of the effects of ${\alpha}$-defensin 1, the changes of effects on PE-induced contraction by ${\alpha}$-defensin 1 pretreatment were observed after pretreatment of Rho kinase inhibitor (Y-27632), protein kinase C (PKC) inhibitor (Calphostin C), potent activator of PKC (PDBu; phorbol 12,13-dibutyrate), and NF-${\kappa}B$ inhibitors (PDTC; pyrrolidinedithiocarbamate and sulfasalazine). The contractile responses of PE ($10^{-9}{\sim}10^{-4}$ M) were significantly decreased in some concentrations of ${\alpha}$-defensin 1 ($5{\times}10^{-9}$ and $5{\times}10^{-8}$ M). When strips were pretreated with NF-kB inhibitors (PDTC and sulfasalazine; $10^{-7}{\sim}10^{-6}$ M), the relaxing responses by ${\alpha}$-defensin 1 pretreatment were disappeared. The present study demonstrated that ${\alpha}$-defensin 1 has relaxing effects on the contractions of rat detrusor muscles, through NF-${\kappa}B$ pathway. Further studies in vivo are required to clarify whether ${\alpha}$-defensin 1 might be clinically related with bladder dysfunction by inflammation process.