• Title/Summary/Keyword: Inhibition dose

Search Result 2,186, Processing Time 0.041 seconds

The Inhibition Effect of Triptolide on Human Endometrial Carcinoma Cell Line HEC-1B: a in vitro and in vivo Studies

  • Ni, Jing;Wu, Qiang;Sun, Zhi-Hua;Zhong, Jian;Cai, Yu;Huang, Xin-En
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.11
    • /
    • pp.4571-4576
    • /
    • 2015
  • Background: To investigate the inhibitory effect and the underlying mechanism of triptolide on cultured human endometrial carcinoma HEC-1B cells and corresponding xenograft. Materials and Methods: For in vitro studies, the inhibition effect of proliferation on HEC-1B cell by triptolide was determined by MTT assay; cell cycle and apoptosis of the triptolide-treated and untreated cells were detected by flow cytometry. For in vivo studies, a xenograft tumor model of human endometrial carcinoma was established using HEC-1B cells, then the tumor-bearing mice were treated with high, medium, and low-dose ($8{\mu}g$, $4{\mu}g$ and $2{\mu}g/day$) triptolide or cisplatin at $40{\mu}g/day$ or normal saline as control. The mice were treated for 10-15 days, during which body weight of the mice and volume of the xenograft were weighted. Then expression of Bcl-2 and vascular endothelial growth factor (VEGF) was analyzed by SABC immunohistochemistry. Results: Cell growth was significantly inhibited by triptolide as observed by an inverted phase contrast microscope; the results of MTT assay indicated that triptolide inhibits HEC-1B cell proliferation in a dose and time-dependent manner; flow cytometry showed that low concentration (5 ng/ml) of triptolide induces cell cycle arrest of HEC-1B cells mainly at S phase, while higher concentration (40 or 80 ng/ml) induced cell cycle arrest of HEC-1B cells mainly at G2/M phase, and apoptosis of the cells was also induced. High-dose triptolide showed a similar tumor-inhibitory effect as cisplatin (-50%); high-dose triptolide significantly inhibited Bcl-2 and VEGF expression in the xenograft model compared to normal saline control (P<0.05). Conclusions: triptolide inhibits HEC-1B cell growth both in vitro and in mouse xenograft model. Cell cycle of the tumor cells was arrested at S and G2/M phase, and the mechanism may involve induction of tumor cell apoptosis and inhibition of tumor angiogenesis.

Antioxidative and Antimutagenic Effects of $Arctium$ $lappa$ Ethanol Extract (우엉 에탄올 추출물의 항산화활성과 항돌연변이 효과)

  • Lee, Mee-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.4
    • /
    • pp.713-719
    • /
    • 2011
  • The antioxidant activities of the ethanol extract of Arctium lappa were assessed by measuring the 1,1-diphenyl-2-picrylhydrazyl( DPPH) radical scavenging effect, inhibition of $Fe^{2+}$-induced lipid peroxidation, inhibition of malondialdehyde(MDA)-bovine serum albumin(BSA) conjugation reaction and antimutagenic capacities using the Ames test. The DPPH radical scavenging activity and inhibition of $Fe^{2+}$-induced lipid peroxidation of the $Arctium$ $lappa$ ethanol extract significantly increased in a dose-dependent manner. In the radical scavenging assay using DPPH, the $IC_{50}$ of the Arctium lappa extract was 296 ${\mu}g$/assay(1.29 mg of dry sample). In addition, the $IC_{50}$ in the inhibition of $Fe^{2+}$-induced lipid peroxidation was 1,759 ${\mu}g$/assay(7.65 mg of dry sample). This extract also significantly inhibited the MDA-BSA conjugation reaction with an $IC_{50}$ of 57.58 mg/assay(250 mg of dry sample). However, no inhibitory effects against the direct and indirect mutagenicities in $Salmonella$ Typhimurium TA98 and TA100 were observed. Based on these results, the ethanol extract of $Arctium$ $lappa$ was shown to display considerable antioxidative activities.

Arginase Inhibition by Ethylacetate Extract of Caesalpinia sappan Lignum Contributes to Activation of Endothelial Nitric Oxide Synthase

  • Shin, Woo-Sung;Cuong, To Dao;Lee, Jeong-Hyung;Min, Byung-Sun;Jeon, Byeong-Hwa;Lim, Hyun-Kyo;Ryoo, Sung-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.3
    • /
    • pp.123-128
    • /
    • 2011
  • Caesalpinia sappan (C. sappan) is a medicinal plant used for promoting blood circulation and removing stasis. During a screening procedure on medicinal plants, the ethylacetate extract of the lignum of C. sappan (CLE) showed inhibitory activity on arginase which has recently been reported as a novel therapeutic target for the treatment of cardiovascular diseases such as atherosclerosis. CLE inhibited arginase II activity prepared from kidney lysate in a dose-dependent manner. In HUVECs, inhibition of arginase activity by CLE reciprocally increased NOx production through enhancement of eNOS dimer stability without any significant changes in the protein levels of eNOS and arginase II expression. Furthermore, CLE-dependent arginase inhibition resulted in increase of NO generation and decrease of superoxide production on endothelium of isolated mice aorta. These results indicate that CLE augments NO production on endothelium through inhibition of arginase activity, and may imply their usefulness for the treatment of cardiovascular diseases associated with endothelial dysfunction.

Antimicrobial and lipid peroxidation inhibition activity of Oxystelma esculentum (Asclepiadaceae)

  • D., Ashok Kumar;V., Thamil Selvan;Saha, Prerona;Islam, Aminul;Mazumder, Upal Kanti;Gupta, Malaya
    • Advances in Traditional Medicine
    • /
    • v.10 no.3
    • /
    • pp.208-213
    • /
    • 2010
  • The aerial parts of methanol extract of Oxystelma esculentum (MEOE) (Asclepiadaceae) was evaluated for in vitro lipid peroxidation and antimicrobial activity. Lipid peroxidation was assayed by the change in optical density of the various concentrations (20 - 320 ${\mu}g$/ml) and the percentage inhibition was estimated. Ascorbate/FeSO4-induced peroxidation was inhibited by MEOE and standard antioxidants such as BHA, BHT and the percentage inhibition of the methanol extract was increased with dose dependent manner. The $IC_{50}$ value of the MEOE, BHA and BHT for lipid peroxidation was found to be 135.24 ${\mu}g$/ml, 25.62 ${\mu}g$/ml and 17.13 ${\mu}g$/ml, respectively. The antimicrobial activity of MEOE was determined by disc diffusion method with three grampositive, five gram-negative and two fungal microorganisms. MEOE exhibited the antimicrobial activity against the tested microorganisms except Salmonella typhimurium (MTCC 98). In present study, it is concluded that MEOE has significant effect in the inhibition of lipid peroxidation and possesses good antimicrobial activity.

Protective Effect of Physostigmine and Neostigmine against Acute Toxicity of Parathion in Rats

  • Jun, Jung-Won;Kim, Young-Chul
    • Archives of Pharmacal Research
    • /
    • v.14 no.4
    • /
    • pp.330-335
    • /
    • 1991
  • The effects of physostigmine and neostigmine on the parathin induced toxicity were examined in adult female rats. Physostigmine $(100\;{\mu}g/kg,\;ip)$ or neostigmine $(200\;{\mu}g/kg,\;ip)$ inhibited acetylcholinesterase (AChE) and cholinesterase (ChE) activities in blood, brain and lung when the enzyme activity was measured 30 min after the treatment. At the doses of two carbamates equipotent on brain AChE, neostigmine showed greater inhibition on peripheral AChE/ChE. The enzyme activity returned to normal in 120 min following the carbamates except in the lung of rats treated with neostigmine. Carbamates administered 30 min prior to parathion (2 mg/kg) antagonized the inhibition of AChE/ChE by parathion when the enzyme activity was measured 2 hr following parathion. Neostigmine showed greater protective effect on peripheral AChE/ChE. The effect of either carbamate on AChE/ChE was not significant 2 hr beyond the parathion treatment. Carbamates decreased the mortality of rats challenged with a lethal dose of parathion (4 mg/kg, ip) either when treated alone or in combination with atropine (10 mg/kg, ip). Lethal action of paraoxon (1.5 mg/ks ip), the active metabolite of parathion was also decreased by the carbamate treatment indicating that the protection was not mediated by competitive inhibition of metabolic conversion of parathion to paraoxon. The results suggest that carbamylation of the active sites may not be the sole underlying mechanism of protection provided by the carbamates.

  • PDF

Inhibition of Adventitious Root Growth in Boron-Deficient or Aluminum-Stressed Sunflower Cuttings

  • Hong, Jung-Hee;Go, Eun-Jung;Kim, Tae-Yun
    • Journal of Environmental Science International
    • /
    • v.12 no.11
    • /
    • pp.1189-1196
    • /
    • 2003
  • The effect of boron and aluminum on the development of adventitious roots was studied in sunflower cuttings. Three-day-old seedlings were de-rooted and grown in nutrient solutions with or without boron and supplemented with different concentrations (from 50 to 700 ${\mu}$M) of aluminum. The number and length of the adventitious roots and proline content in adventitious roots in response to insufficient boron and aluminum stress were determined periodically. The micronutrient boron caused the development of numerous roots in the lower parts of the hypocotyl. A dose-response of boron-induced rooting yielded an optimum concentration of 0.1 mM boron. In the absence of boron, in the majority of the adventitious roots, a significant inhibition was observed with or without aluminum, indicating that the most apparent symptom of boron deficiency is the cessation of root growth. Increasing concentrations of aluminum caused progressive inhibition of growth and rooting of the hypocotyls, and a parallel increase in proline levels of adventitious roots. Supplemental boron ameliorated the inhibitory effect of aluminum, suggesting that aluminum could inhibit root growth by inducing boron deficiency. Ascorbate added to medium in the absence of boron improved root growth and induced a significant decrease in proline levels. These findings suggest that adventitious root growth inhibition resulting from either boron deficiency or aluminum toxicity may be a result of impaired ascorbate metabolism.

Beneficial Effect of Scutellaria baicalensis Georgi Extract on Mercury Chloride-Induced Membrane Transport Dysfunction in Rabbit Renal Cortical Slices (황금약침액(黃芩藥鍼液)이 가토(家兎) 신피질절편(腎皮質切片)에서 수은(水銀)에 의한 세포막(細胞膜) 물질이동(物質移動) 기능장애(機能障碍)에 미치는 영향(影響))

  • Kim, Hong-Soo;Song, Choon-Ho
    • Journal of Pharmacopuncture
    • /
    • v.4 no.2
    • /
    • pp.49-56
    • /
    • 2001
  • This study was undertaken to determine whether Scutellaria baicalensis Georgi (SbG) extract exerts the protective effect against $HgCl_2$-induced alterations in membrane transport function in rabbit renal cortical slices. The slices were treated with 0.1 mM $HgCl_2$ for 60 min at $37^{\circ}C$. $HgCl_2$ caused an inhibition in PAH uptake by renal cortical slices. Such an effect was accompanied by depressed $Na^+-K^+$-ATPase activity and ATP depletion. SbG prevented $HgCl_2$-induced inhibition of PAH uptake in a dose-dependent manner at the concentration ranges of 0.01-0.1%. $HgCl_2$-induced inhibition of $Na^+-K^+$-ATPase activity and ATP depletion were significantly prevented by 0.05% SbG. These results suggest that SbG prevents $HgCl_2$-induced alterations in membrane transport function in rabbit renal cortical slices. Such protective effects of SbG may be attributed to inhibition of peroxidation of membrane lipid.

Effects of Ethanol on Na-K-ATPase Activity of Cat Kidney (Ethanol 이 고양이 신장 Na-K-ATPase 활성에 미치는 영향)

  • Kim, Joo-Heon;Kim, Yong-Keun
    • Korean Journal of Veterinary Research
    • /
    • v.23 no.1
    • /
    • pp.9-16
    • /
    • 1983
  • The effects of ethanol on Na-K-ATPase activity were investigated with cat kidney homogenate. The results were summarized as follows: 1. Na-K-ATPase activity was inhibited with dose-dependent manner by ethanol of higher concentration than 1%, and showed an estimated $I_{50}$ (the inhibitor concentration to cause 50% inhibition) of 7.5%. 2. Hydrolysis of ATP was linear with the incubation time in the absence and presence of 8% ethanol, whereas it was different with preincubation time in the presence of 15% ethanol. 3. Inhibition of Na-K-ATPase activity by ethanol was not affected by increased enzyme concentration, and showed the reversibility of the inhibitory pattern. 4. Kinetic studies of cationic-substrate activation of Na-K-ATPase showed that ethanol had both properties of classical competitive inhibition for $Mg^{{+}{+}}$ or $K^+ and non-competitive inhibition for ATP or $Na^+$. 5. Arrhenius plot yield two break point at $21^{\circ}$ and $30^{\circ}C$ in the absence of ethanol, whereas showing only one break point at $18^{\circ}C$ in the presence of 8% ethanol. These results suggested that ethanol inhibited Na-K-ATPase activity reversible through a disturbance of microenvironment of lipids associated with the enzyme.

  • PDF

The Effect of Selaginella tamariscina on Inhibition of Pancreatic Lipase and Lipid Accumulation (부처손(Selaginella tamariscina) 추출물의 리파아제 저해 활성 및 지질 축적 억제 효과)

  • Kim, Gun-Hee;Lee, Shin-Young;Lee, Ae-Rang
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.1
    • /
    • pp.27-32
    • /
    • 2019
  • The objective of this study was to evaluate novel usability as natural anti-obesity supplement of Selaginella tamariscina extract. The total phenol contents and total flavonoid contents were $60.29{\pm}3.11GAE\;mg/g$ and $14.90{\pm}0.34QE\;mg/g$, respectively. To evaluate anti-obesity activity of Selaginella tamariscina extract, pancreatic lipase inhibition activity as well as its inhibition effect of lipid accumulation in adipocytes were conducted by Oil Red O staining and lipolysis assay. The result of pancreatic lipase inhibition activity of S. tamariscina extract showed a wide range between 40 and 73% dose dependently. While the incubation of 3T3-L1 cells with S. tamariscina extract inhibited differentiation of preadipocytes and reduced lipid accumulation, the level of released free glycerol into culturing medium was increased in multiple concentrations. These results showed that S. tamariscina extract inhibit adipogenesis and pancreatic lipase activity. Thus, S. tamariscina extract can be a candidate for regulating lipid accumulation in obesity.

Inhibition of Quorum Sensing Regulated Virulence Factors and Biofilm Formation by Eucalyptus globulus against Multidrug-Resistant Pseudomonas aeruginosa

  • Sagar, Pankaj Kumar;Sharma, Poonam;Singh, Rambir
    • Journal of Pharmacopuncture
    • /
    • v.25 no.1
    • /
    • pp.37-45
    • /
    • 2022
  • Objectives: The quorum-sensing-inhibitory and anti-biofilm activities of the methanol extract of E. globulus leaves were determined against clinically isolated multidrug-resistant Pseudomonas aeruginosa. Methods: The preliminary anti-quorum-sensing (AQS) activity of eucalyptus was investigated against a biosensor strain Chromobacterium violaceum ATCC 12472 (CV12472) by using the agar well diffusion method. The effect of sub-minimum inhibitory concentrations (sub-MICs) of the methanol extract of eucalyptus on different quorum-sensing-regulated virulence factors, such as swarming motility, pyocyanin pigment, exopolysaccharide (EPS), and biofilm formation, against clinical isolates (CIs 2, 3, and 4) and reference PA01 of Pseudomonas aeruginosa were determined using the swarm diameter (mm)-measurement method, chloroform extraction method, phenol (5%)-sulphuric acid (concentrated) method, and the microtiter plate assay respectively, and the inhibition (%) in formation were calculated. Results: The preliminary AQS activity (violacein pigment inhibition) of eucalyptus was confirmed against Chromobacterium violaceum ATCC 12472 (CV12472). The eucalyptus extract also showed concentration-dependent inhibition (%) of swarming motility, pyocyanin pigment, EPS, and biofilm formation in different CIs and PA01 of P. aeruginosa. Conclusion: Our results revealed the effectiveness of the E. globulus extract for the regulation of quorum-sensing-dependent virulence factors and biofilm formation at a reduced dose (sub-MICs) and suggest that E. globulus may be a therapeutic agent for curing and controlling bacterial infection and thereby reducing the possibility of resistance development in pathogenic strains.