• Title/Summary/Keyword: Inhalation dose

Search Result 158, Processing Time 0.024 seconds

In vivo Genotoxicity of Silver Nanoparticles after 90-day Silver Nanoparticle Inhalation Exposure

  • Kim, Jin-Sik;Sung, Jae-Hyuck;Ji, Jun-Ho;Song, Kyung-Seuk;Lee, Ji-Hyun;Kang, Chang-Soo;Yu, Il-Je
    • Safety and Health at Work
    • /
    • v.2 no.1
    • /
    • pp.34-38
    • /
    • 2011
  • Objectives: The antimicrobial activity of silver nanoparticles has resulted in their widespread use in many consumer products. Yet, despite their many advantages, it is also important to determine whether silver nanoparticles may represent a hazard to the environment and human health. Methods: Thus, to evaluate the genotoxic potential of silver nanoparticles, in vivo genotoxicity testing (OECD 474, in vivo micronuclei test) was conducted after exposing male and female Sprague-Dawley rats to silver nanoparticles by inhalation for 90 days according to OECD test guideline 413 (Subchronic Inhalation Toxicity: 90 Day Study) with a good laboratory practice system. The rats were exposed to silver nanoparticles (18 nm diameter) at concentrations of $0.7\;{\times}\;10^6$ particles/$cm^3$ (low dose), $1.4\;{\times}\;10^6$ particles/$cm^3$ (middle dose), and $2.9\;{\times}\;10^6$ particles/$cm^3$ (high dose) for 6 hr/day in an inhalation chamber for 90 days. The rats were killed 24 hr after the last administration, then the femurs were removed and the bone marrow collected and evaluated for micronucleus induction. Results: There were no statistically significant differences in the micronucleated polychromatic erythrocytes or in the ratio of polychromatic erythrocytes among the total erythrocytes after silver nanoparticle exposure when compared with the control. Conclusion: The present results suggest that exposure to silver nanoparticles by inhalation for 90 days does not induce genetic toxicity in male and female rat bone marrow in vivo.

Analysis on the Risk-Based Screening Levels Determined by Various Risk Assessment Tools (III): Proposed Methodology for Lead Risk Assessment in Korea (다양한 위해성평가 방법에 따라 도출한 토양오염 판정기준의 차이에 관한 연구(III): 우리나라 납 오염 위해성평가 방법 제안)

  • Jung, Jae-Woong;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.1-7
    • /
    • 2015
  • The most critical health effect of lead exposure is the neurodevelopmental effect to children caused by the increased blood lead level. Therefore, the endpoint of the risk assessment for lead-contaminated sites should be set at the blood lead level of children. In foreign countries, the risk assessment for lead-contaminated sites is conducted by estimating the increased blood lead level of children via oral intake and/or inhalation (United States Environmental Protection Agency, USEPA), or by comparing the estimated oral dose to the threshold oral dose of lead, which is derived from the permissible blood lead level of children (Dutch National Institute for Public Health and the Environment, RIVM). For the risk assessment, USEPA employs Integrated-Exposure-Uptake-Biokinetic (IEUBK) Model to check whether the estimated portion of children whose blood lead level exceeds 10 µg/dL, threshold blood lead level determined by USEPA, is higher than 5%, while Dutch RIVM compares the estimated oral dose of lead to the threshold oral dose (2.8 µg/kg-day), which is derived from the permissible blood lead level of children. In Korea, like The Netherlands, risk assessment for lead-contaminated sites is conducted by comparing the estimated oral dose to the threshold oral dose; however, because the threshold oral dose listed in Korean risk assessment guidance is an unidentified value, it is recommended to revise the existing threshold oral dose described in Korean risk assessment guidance. And, if significant lead exposure via inhalation is suspected, it is useful to employ IEUBK Model to derive the risk posed via multimedia exposure (i.e., both oral ingestion and inhalation).

Estimation of PM10 and PM2.5 inhalation dose by travel time and respiratory volume in common transport microenvironments in Seoul, Korea (서울지역 교통수단별 이동시간과 호흡량을 고려한 미세먼지 흡입량 추정에 관한 연구)

  • Lee, Yong-Il;Jung, Wonseck;Hwang, Doyeon;Kim, Taesung;Park, Duckshin
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.97-105
    • /
    • 2018
  • Recently, people's interest in particulate matter (PM) has been increasing, due to its hazardous health effects. The purpose of this study was to investigate the concentrations and as well as the inhaled weight of PM, correlated with person's heart rate in subway, bus, vehicle and bicycle in the major public transportation (Sadang - Jamsil and Nowon - Dongdaemun) in Seoul. The concentration of $PM_{10}$ and $PM_{2.5}$ were measured from each of transportation means and calculated the average concentrations which were 87.2 and $57.8{\mu}g/m^3$ for subway, 62.8 and $42.5{\mu}g/m^3$ for vehicle, 61.5 and $36.8{\mu}g/m^3$ for bus and 53.0 and $29.4{\mu}g/m^3$ for bicycle in $PM_{10}$ and $PM_{2.5}$ respectively. Inhalation dose for $PM_{10}$ and $PM_{2.5}$ were estimated at 248.1 and $139.4{\mu}g$ for bicycle, 56.7 and $39.3{\mu}g$ for vehicle, 49.4 and $29.9{\mu}g$ for bus and 44.3 and $29.1{\mu}g$ for subway, respectively. Even though subway had the highest concentration, the highest inhalation dose was the bicycle. It was due to the long travel time-exposure and breathing rate which leads to maximum of $PM_{10}$ 5.6 and $PM_{2.5}$ with 4.8 times inhalation dose comparing with other modes of transportation. With regards to future studies, the amount of inhalation in each transportation means should be considered in risk assessments of PM.

Effects of Water Extracts of Persimmon Leaves to Cadmium Toxicity in Rats by Inhalation Exposure (시엽 추출물이 카드뮴에 흡입폭로된 랫드의 독성에 미치는 영향)

  • Kang Sung Ho;Chun Byung Yeol;Kim Sang Duck;Song Young Son;Lee Ki Nam;Jeung Jae Yeal
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.1
    • /
    • pp.78-88
    • /
    • 2002
  • Experimental animals were divided into 5 groups; normal, cadmium control, and 3 experimental groups. Cadmium control and experimental groups were exposed to 1 mg/㎥ of cadmium aerosol in air by inhalation exposure for 6 hours/day, 5 days/week during 4 weeks. Dosages of 20, 40, and 80mg/kg of extracts of persimmon leaves were intraperitoneally injected to experimental groups respectively and several toxicological parameters and induction of metallothionein were measured from the rats that inhaled cadmium aerosol in air. The results of this study were as follows. Cadmium concentration that cadmium control and experimental groups were inhaled was 0.980±0.061 mg/㎥. Mass median diameter of cadmium aerosol for inhalation exposure was 4.93±0.483㎛. Cadmium content of normal group in lung was 0.088㎍/g and the highest cadmium content in lung, 55.492㎍/g was from 80mg/kg dose group. Cadmium concentration of normal group in blood was 0.348㎍/100㎖ and the highest cadmium concentration in blood, 2.642㎍/100㎖ was from cadmium control. Cadmium concentration of normal group in liver was 0.010㎍/g and the highest cadmium concentration in liver, 31.100㎍/g was from 20mg/kg dose group. Cadmium concentration of normal group in kidney was 0.030㎍/g and the highest cadmium concentration in kidney, 2.526㎍/g was from cadmium control. Cadmium concentration of normal group in intestine was O.064㎍/g and the highest cadmium concentration in intestine, 0.300㎍/g was from 80mg/kg dose group. The highest cadmium concentration in urine by week was 6.080㎍/day from 20mg/kg dose group in the fouth week and the highest cadmium concentration in feces by week was 341.731㎍/day from 20mg/kg dose group in the fouth week. Metallothionein concentration of normal group in lung was 5.769㎍/g and the highest in lung, 30.986㎍/g was from 80mg/kg dose group. Metallothionein concentration of normal group in liver was 38.856㎍/g and the highest in liver, 169.378㎍/g was from 40mg/kg dose group. Metallothionein concentration of normal group in kidney was 22.228㎍/g and the highest in kidney, 47.898㎍/g was from 80mg/kg dose group. Metallothionein concentration of normal group in intestine was 2.170㎍/g and the highest in intestine, 13.642㎍/g was from 80mg dose group.

Public Exposure to Natural Radiation and the Associated Increased Risk of Lung Cancer in the Betare-Oya Gold Mining Areas, Eastern Cameroon

  • Joseph Emmanuel Ndjana Nkoulou II;Louis Ngoa Engola;Guy Blanchard Dallou;Saidou;Daniel Bongue;Masahiro Hosoda;Moise Godefroy Kwato Njock;Shinji Tokonami
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.2
    • /
    • pp.59-67
    • /
    • 2023
  • Background: This study aims to reevaluate natural radiation exposure, following up on our previous study conducted in 2019, and to assess the associated risk of lung cancer to the public residing in the gold mining areas of Betare-Oya, east Cameroon, and its vicinity. Materials and Methods: Gamma-ray spectra collected using a 7.62 cm×7.62 cm in NaI(Tl) scintillation spectrometer during a car-borne survey, in situ measurements and laboratory measurements performed in previous studies were used to determine the outdoor absorbed dose rate in air to evaluate the annual external dose inhaled by the public. For determining internal exposure, radon gas concentrations were measured and used to estimate the inhalation dose while considering the inhalation of radon and its decay products. Results and Discussion: The mean value of the laboratory-measured outdoor gamma dose rate was 47 nGy/hr, which agrees with our previous results (44 nGy/hr) recorded through direct measurements (in situ and car-borne survey). The resulting annual external dose (0.29±0.09 mSv/yr) obtained is similar to that of the previous study (0.33±0.03 mSv/yr). The total inhalation dose resulting from radon isotopes and their decay products ranged between 1.96 and 9.63 mSv/yr with an arithmetic mean of 3.95±1.65 mSv/yr. The resulting excess lung cancer risk was estimated; it ranged from 62 to 216 excess deaths per million persons per year (MPY), 81 to 243 excess deaths per MPY, or 135 excess deaths per MPY, based on whether risk factors reported by the U.S. Environmental Protection Agency, United Nations Scientific Committee on the effects of Atomic Radiation, or International Commission on Radiological Protection were used, respectively. These values are more than double the world average values reported by the same agencies. Conclusion: There is an elevated level of risk of lung cancer from indoor radon in locations close to the Betare-Oya gold mining region in east Cameroon. Therefore, educating the public on the harmful effects of radon exposure and considering some remedial actions for protection against radon and its progenies is necessary.

Radioactive gas diffusion simulation and inhaled effective dose evaluation during nuclear decommissioning

  • Yang, Li-qun;Liu, Yong-kuo;Peng, Min-jun;Ayodeji, Abiodun;Chen, Zhi-tao;Long, Ze-yu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.293-300
    • /
    • 2022
  • During the decommissioning of the nuclear facilities, the radioactive gases in pressure vessels may leak due to the demolition operations. The decommissioning site has large space, slow air circulation, and many large nuclear facilities, which increase the difficulty of workers' inhalation exposure assessment. In order to dynamically evaluate the activity distribution of radionuclides and the committed effective dose from inhalation in nuclear decommissioning environment, an inhalation exposure assessment method based on the modified eddy-diffusion model and the inhaled dose conversion factor is proposed in this paper. The method takes into account the influence of building, facilities, exhaust ducts, etc. on the distribution of radioactive gases, and can evaluate the influence of radioactive gases diffusion on workers during the decommissioning of nuclear facilities.

Evaluation of absorbed dose in monkey and mouse using 18F-FDG PET and CT density information

  • Kim, Wook;Lee, Yong Jin;Park, Yong Sung;Cho, Doo-Wan;Lee, Hong-Soo;Han, Su-Cheol;Kang, Joo Hyun;Woo, Sang-Keun
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.1
    • /
    • pp.18-24
    • /
    • 2017
  • Patient-specific image-based internal dosimetry involves using the patient's individual anatomy and spatial distribution of radioactivity over time to obtain an absorbed dose calculation. Individual absorbed dose was calculated by accumulated activity multiply S-value of each organs. The aim of this study was to calculate the S-values using Monte Carlo simulation in monkey and mouse and evaluation of absorbed dose in each organ. Self-irradiation S-value of monkey heart self-irradiation was 3.15E-03 mGy-g/MBq-s, lung self-irradiation was 8.94E-04 mGy-g/MBq-s and liver self-irradiation S-value was 2.23E-03 mGy-g/MBq-s. Mouse heart self-irradiation S-value was 1.95E-01 mGy-g/MBq-s, lung was 9.59E-02 mGy-g/MBq-s, and liver was 1.40E-03 mGy-g/MBq-s. The results of this study show that the calculation protocol of image based individual absorbed dose of each organ using Monte Carlo simulation. Therefore, this study may be applied to calculate human specific absorbed dose.

Pulmonary Toxicity and Recovery from Inhalation of Manual Metal Arc Stainless Steel Welding Fumes in Rats

  • Yang, Mi-Jin;Kim, Jin-Sung;Yang, Young-Su;Cho, Jae-Woo;Choi, Seong-Bong;Chung, Yong-Hyun;Kim, Yong-Bum;Cho, Kyu-Hyuk;Lim, Chae-Woong;Kim, Choong-Yong;Song, Chang-Woo
    • Toxicological Research
    • /
    • v.24 no.2
    • /
    • pp.119-127
    • /
    • 2008
  • The objectives of this study were to examine the lung injury and inflammation caused by manual metal arc stainless steel(MMA-SS) welding fume inhalation and to evaluate the recovery process. Sprague-Dawley rats were exposed to MMA-SS welding fumes for 2 h per day in a whole-body exposure chamber, with a total suspended particulate(TSP) concentration of $51.4{\pm}2.8mg/m^3$(low dose) or $84.6{\pm}2.9mg/m^3$(high dose) for 30 days. The animals were sacrificed after 30 days of exposure as well as after a 30-day recovery period. To assess the inflammatory or injury responses, cellular and biochemical parameters as well as cytokines were assayed in the bronchoalveolar lavage fluid(BALF). MMA-SS welding fume exposure led to a significant elevation in the number of alveolar macrophages(AM) and polymorphonuclear cells(PMN). Additionary, the values of $\beta$-n-acetyl glucosaminidase($\beta$-NAG) and lactate dehydrogenase(LDH) in the BALF were increased in the exposed group when compared to controls. After 30 days of recovery from exposure, a significant reduction in inflammatory parameters of BALF was observed between the exposed and recovered groups. Slight, but significant elevations were noted in the number of AM and PMN in the recovered groups, and AM that had been ingested fume particles still remain in the lungs. In conclusion, these results indicated that welding fumes induced inflammatory responses and cytotoxicity in the lungs of exposed rats. Fume particles were not fully cleared from lungs even after a 30-day recovery period.

Potential Errors in Committed Effective Dose Due to the Assumption of a Single Intake Path in Interpretation of Bioassay Results (바이오어세이 결과 해석에서 단일 섭취경로 가정에 따르는 예탁유효선량의 잠재오차)

  • Lee, Jong-Il;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.3
    • /
    • pp.135-140
    • /
    • 2006
  • Intakes of radionuclides through both inhalation and ingestion pathways may occur particularly in an incident involving unsealed radionuclides. If one assume only one intake path in this case, which is usual in routine monitoring, a significant error in the evaluated committed effective dose($E_{50}$) may result. In order to demonstrate the potential errors, variations of the resulting committed effective doses were analyzed for different fractions of the inhaled activities to the total intake of $^{241}Am$. Simulated bioassav measurements for the lungs, urine and feces were generated based on the biokinetic model and data of the radionuclide, 5 ${\mu}m$ AMAD and absorption type M for inhalation, for various inhalation fractions. The potential errors in $E_{50}$ due to the assumption of one intake path were in the range from -100% to as large as +34,000% when the bioassays were made 3 days after the intakes. Larger errors are expected when only the feces assay is applied while inhalation intake exists. A strategy which employs two types of bioassay was proposed to reduce the error caused by a misjudgement of the intake path.

Effects of Extract of Radix Achyranthis Bidentatae on Cadmium Inhalation Toxicity in Rats (우슬 추출물이 카드뮴 흡입폭로된 흰쥐의 독성해독에 미치는 영향)

  • Kim Hong Ki;Jeung Jaeyeal;Park Seung Jong;Kang Sung Ho;Song Young Sun;Lee Ki-Nam
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.474-483
    • /
    • 2004
  • To know the effects between Cd inhalation toxicity and extract of Radix Achyranthis Bidentatae, 4 rat groups were exposed to Cd aerosol in air using whole-body inhalation exposure for 6 hours/day, 5 days/week, and 4 weeks. Cd concentration in air was 1.03㎎/㎥ and mass median diameter(MMD) was 1.69㎛. 3 different dose intraperitoneal injections of extract of Radix Achyranthis Bidentatae to 3 inhalation exposure groups was done for 4 weeks and the results were as follows: The highest body weight gain for 4 weeks and food intake per day were from inhalation exposure group I and the highest lung and liver weight were also from inhalation exposure group I. The highest kidney weight was from inhalation exposure group III. The lowest Cd content in lung was 33.49㎍/g from inhalation exposure group I. The lowest Cd concentration in blood was 9.36㎍/㎗ from inhalation exposure control. Cd concentrations of 40.02㎍/g in liver and 69.18㎍/g in kidney were the lowest from inhalation exposure group I and III, respectively. The lowest Cd concentration in liver was 21.08㎍/g from inhalation exposure group III and The lowest Cd concentration in kidney was 15.78㎍/g from inhalation exposure group II. For weekly Cd concentration in urine, the value of the fourth week from inhalation exposure group III was the highest. For weekly Cd concentration in feces, the value of the first week from inhalation exposure group III was the highest. The highest metallothionein concentration in lung was 53.42 ㎍/g from inhalation exposure group III and the highest metallothionein concentration in liver was 188.18㎍/g from inhalation exposure group III. The highest metallothionein concentration in kidney was 143.92㎍/g from inhalation exposure group III. The highest Hct, Hb, and WBC values were from inhalation exposure group II and the highest RBC value was from inhalation exposure group III.