• 제목/요약/키워드: Ingot

검색결과 379건 처리시간 0.027초

TRIZ(6SC)를 활용한 잉곳 인상모듈 및 실리콘 단결정 잉곳 제조장치의 창의적 설계 (A Study on the Creative Design of Pulling Module for Silicon Ingot and an Apparatus of Manufacturing Silicon Single Crystal Ingot by using TRIZ(6SC))

  • 홍성도;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제11권2호
    • /
    • pp.39-43
    • /
    • 2012
  • This paper presents a study on the design of a pulling module for silicon ingot and an apparatus of manufacturing silicon single crystal ingot using the same method. The pulling module is conceptually designed by using TRIZ. Czochralski method(CZ) is representative way to manufacture single crystal ingot for wafers. The seed can be broken by high tension which is caused by large weight of a silicon ingot. The solution of this problem has been derived using 6SC(6 steps creativity)TRIZ. The pulling module is actuated by DC motor and rollers. High tension in the seed is removed by the rotate-elevate motion of rollers in the pulling module. A rubber belt is included in the rotate-elevate mechanism for increasing friction between rollers and silicon ingot.

대형 Ingot의 Upset 단조기술에 관한 연구 (A Parametric Study for the Upset Forging of Large Ingot)

  • 박승희;유성만;신상엽
    • 소성∙가공
    • /
    • 제8권1호
    • /
    • pp.101-107
    • /
    • 1999
  • The upset forging stage is the initial work in the forging process. It is used to remove the segregation and cavities of the ingot. Specially in handling large sized ingot, an improper upset forging can cause serious surface tearing. However, there is no detail reference for stable upset forging work. To resolve this difficulty, we studied several factors such as upset forging time, temperature varation of ingot, damage, load and stain rate etc., by using the rigid-plastic finite element approach available in the DEFORM code. Numerical simulation results indicated that: the load value of upset forging works shows severe decreasing trend at a certain point, same as strain rate. Also defects were found to be concentrated around the upper and lower portions of the ingot. With these results, we can estimate a guideline for stable upset forging work.

  • PDF

AIM 및 ESR 법에 의해 제조한 Fe-29Ni-17Co 합금의 조직 및 성질 (Structure and Properties of Fe-29Ni-17Co Alloy Manufactured by Air Induction Melting and Electro-Slag Remelting)

  • 이정근;김문현;주대헌;김명호
    • 한국주조공학회지
    • /
    • 제22권4호
    • /
    • pp.160-166
    • /
    • 2002
  • The structure and properties of Fe-29Ni-17Co alloy which had been melted using induction furnace in air atmosphere and than electroslag-remelted were investigated. The oxygen content was reduced to 0.03% when the ingot was refined from $0.09{\sim}0.12%$ of that air melted. The amounts of spheroidal oxides inclusions and gas porosities of ingot were markedly reduced by the ESR process. CTE of ESR ingot contained small amount of oxides and porosities was found to be lower than that of AIM ingot, and tensile properties of ESR ingot and plate were found to be superior than that of AIM ingot and plate.

잉곳 무게 제한 조건을 고려한 Job-Shop형 주물공장의 스케줄링 (Scheduling of a Casting Sequence Considering Ingot Weight Restriction in a Job-Shop Type Foundry)

  • 박용국;양정민
    • 산업경영시스템학회지
    • /
    • 제31권3호
    • /
    • pp.17-23
    • /
    • 2008
  • In this research article, scheduling a casting sequence in a job-shop type foundry involving a variety of casts made of an identical alloy but with different shapes and II weights, has been investigated. The objective is to produce the assigned mixed orders satisfying due dates and obtaining the highest ingot efficiency simultaneously. Implementing simple integer programming instead of complicated genetic algorithms accompanying rigorous calculations proves that it can provide a feasible solution with a high accuracy for a complex, multi-variable and multi-constraint optimization problem. Enhancing the ingot efficiency under the constraint of discrete ingot sizes is accomplished by using a simple and intelligible algorithm in a standard integer programming. Employing this simple methodology, a job-shop type foundry is able to maximize the furnace utilization and minimize ingot waste.

저압탕 고청정 대형 잉고트 제조 연구 (Study on the Fabrication of a Large Steel Ingot with the Ultra Clean and Low Hot Top Ratio)

  • 오상훈;이동희;김남수;남궁정
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.91-93
    • /
    • 2009
  • A large steel ingot needs to be larger and larger in size and an ultra high clean, no defect in quality with a low hot top ratio for the resent heavy industry. The demands are very difficult to achieve simultaneously because of their contradictive effect to each other in results. In this study, 30ton steel ingot was cast in a foundry with an optimized design parameter of cast mold and cast process conditions for the low hot top ratio, 12%. The cast ingot was analyzed in macro defect, segregations, and cleanness. No macro defect was founded in central surface of the ingot. The degree of segregation and cleanness are in the controlled range with a sound quality.

  • PDF

종자결정을 활용한 다결정 규소 잉곳 내의 구조적 결함 규명 (Structural defects in the multicrystalline silicon ingot grown with the seed at the bottom of crucible)

  • 이아영;김영관
    • 한국결정성장학회지
    • /
    • 제24권5호
    • /
    • pp.190-195
    • /
    • 2014
  • 방향성 응고법으로 잉곳을 성장시킬 때 발생하는 온도 구배에 의해 잉곳 내에 결함이 생성되고 잔류 응력이 남게 된다. 이 결함과 잔류 응력은 잉곳의 성장 조건에 따라 달라지며, 웨이퍼의 특성에 큰 영향을 미칠 수 있다. 성장 속도의 변화에 상관 없이 대부분의 잉곳에서는 하부 영역에 비해 상부 영역에서 결정립과 쌍정경계의 크기가 작았으며, 결정립계뿐만 아니라 결정립 내에도 전위 밀도가 높았다. 이것은 상부 영역에서 성장 중에 받는 열 응력이 하부 영역보다 크다는 것을 암시한다. 두 잉곳 간의 차이를 보았을 때에는 성장 속도가 느린 잉곳에서 전위 밀도가 감소하였으며, 웨이퍼의 평탄도, 뒤틀림, 휨, 절단자국이 낮게 측정되었다. 따라서 다결정 성장 공정에서는 냉각 속도가 결함이나 잔류 응력의 발생에 미치는 영향이 크며, 그로 인하여 웨이퍼의 특성이 달라지는 것을 알 수 있었다.

반도체 Wafer용 Ingot Grower 안정화를 위한 구조설계 (Structural Design of an Ingot Grower of the Semiconductor Wafer for the Stability Improvement)

  • 이일환;노승훈;남규동;강신원;김영조;김건형
    • 반도체디스플레이기술학회지
    • /
    • 제16권1호
    • /
    • pp.34-39
    • /
    • 2017
  • Semiconductor is one of the most internationally competitive areas among domestic industries, the major concern of which is the stability of the wafer manufacturing processes. The first process for the manufacturing of the semiconductor wafers is the ingot growing. The vibrations are supposed to be the most important factors for the ingot quality. In order to maintain the ingot quality, the growers have the automatic shut-down equipments which are activated by vibrations, and are sensitive enough to react to the earthquakes generated in Japan. In this study, the structure of an ingot grower was analyzed through experiments and computer simulations, and further the effects of design alterations to suppress the vibrations have been investigated. The final result shows that the vibrations can be reduced substantially to improve the stability of the structure.

  • PDF

중공 잉곳을 이용한 대형 링 단조품 제조공정 설계 연구 (Process Design on Fabrication of Large Sized Ring by Mandrel Forging of Hollow Cast Ingot)

  • 이승욱;이영선;이명원;이동희;김상식
    • 소성∙가공
    • /
    • 제19권6호
    • /
    • pp.329-336
    • /
    • 2010
  • Ring forging process is more appropriate for high-length and thin walled ring, because it utilizes the forging press and hence does not require heavy-duty ring rolling mill. Although ring forging process is very simple and economic for facilities, the process is not efficient because of multi-forging-step and low material utilization. An effective ring forging process is developed using a hollow ingot. When a hollow ingot is used with a workpiece, the ingot can be forged into a final ring without multi-stage pre-forging process, such as, cogging, upsetting, and piercing, etc.. Finally it has advantages of the material utilization and process improvement because a few reheating and forging process are not necessary to make workpiece for ring forging. The important design variables are the applied plastic deformation energy to eliminate cast structure and make uniform properties. In this study, the mechanical properties after forging of hollow cast ingot were investigated from the experiment using circumferential sectional model. Also, the effects of process variables were studied by FEM simulation on the basis of thermo-visco-plastic constitutive equation. Applied strain is different at each position in length direction because diameter of hollow ingot is different in length direction. The different strain distribution become into a narrow gap by additional plastic deformation during diameter extension process.

전자빔 증착 열차폐 코팅용 란타늄-가돌리늄 지르코네이트(La2O3-Gd2O3-ZrO2계) 세라믹 잉곳의 제조공정에 따른 열충격 저항성 (Thermal Shock Resistance According to the Manufacturing Process of Lanthanum Gadolinium Zirconate Ceramic Igot for Thermal Barrier Coating by Electron Beam in the La2O3-Gd2O3-ZrO2 System)

  • 최선아;채정민;김성원;이성민;한윤수;김형태;장병국;오윤석
    • 한국표면공학회지
    • /
    • 제50권6호
    • /
    • pp.465-472
    • /
    • 2017
  • The ingot fabrication conditions related with the thermal shock bearing phase and microstructure have investigated for the rare earth zirconate ceramic material, lanthanum gadolinium zirconate, as a thermal barrier coating using electron beam evaporation method. The thermal shock resistance of the prepared ingot was evaluated by high energy electron beam irradiation. The rare earth zirconate ceramic powder was prepared by controlling the raw material powder composition of $La_2O_3$, $Gd_2O_3$ and $ZrO_2$ so as to have a composition of $(La_{0.3}Gd_{0.7})_2Zr_2O_7$ which was selected from the former study. Ingot samples were prepared under two conditions. The first condition is prepared by sintering the prepared powder mixture to form an ingot. The second condition is prepared by calcining the prepared powder mixture to form a composite phase and then sintering to form an ingot. X-ray diffraction(XRD) and Scanning Electron Microscope(SEM) were used to analyze phase forming behavior and microstructure of ingot samples. Nanoindentation method used to obtain elastic modulus and hardness of each ingot specimen. Also the stress distribution of ingot was simulated by using FEM method assuming the ingot surface was exposed to electron beam. As a results, in the case of an ingot having a network-shaped microstructure in which relatively coarse pores are included, it seems that the thermal shock resistance was higher than in the case of an ingot having a microstructure composed of relatively fine grains only or particles with the similar level size when the high energy electron beam irradiation.