• 제목/요약/키워드: Infrastructure mode

검색결과 155건 처리시간 0.025초

A new method for optimal selection of sensor location on a high-rise building using simplified finite element model

  • Yi, Ting-Hua;Li, Hong-Nan;Gu, Ming
    • Structural Engineering and Mechanics
    • /
    • 제37권6호
    • /
    • pp.671-684
    • /
    • 2011
  • Deciding on an optimal sensor placement (OSP) is a common problem encountered in many engineering applications and is also a critical issue in the construction and implementation of an effective structural health monitoring (SHM) system. The present study focuses with techniques for selecting optimal sensor locations in a sensor network designed to monitor the health condition of Dalian World Trade Building which is the tallest in the northeast of China. Since the number of degree-of-freedom (DOF) of the building structure is too large, multi-modes should be selected to describe the dynamic behavior of a structural system with sufficient accuracy to allow its health state to be determined effectively. However, it's difficult to accurately distinguish the translational and rotational modes for the flexible structures with closely spaced modes by the modal participation mass ratios. In this paper, a new method of the OSP that computing the mode shape matrix in the weak axis of structure by the simplified multi-DOF system was presented based on the equivalent rigidity parameter identification method. The initial sensor assignment was obtained by the QR-factorization of the structural mode shape matrix. Taking the maximum off-diagonal element of the modal assurance criterion (MAC) matrix as a target function, one more sensor was added each time until the maximum off-diagonal element of the MAC reaches the threshold. Considering the economic factors, the final plan of sensor placement was determined. The numerical example demonstrated the feasibility and effectiveness of the proposed scheme.

Cost-Effective Transition to 40 Gb/s Line Rate Using the Existing 10 Gb/s-Based DWDM Infrastructure

  • Lee, Sang-Soo;Cho, Hyun-Woo;Lim, Sang-Kyu;Lee, Dong-Soo;Yoon, Kyeong-Mo;Lee, Yong-Gi;Kim, Kwang-Joon;Ko, Je-Soo
    • ETRI Journal
    • /
    • 제30권2호
    • /
    • pp.261-267
    • /
    • 2008
  • In this paper, we propose and demonstrate a cost-effective technique to upgrade the capacity of dense wavelength division multiplexing (DWDM) networks to a 40 Gb/s line rate using the existing 10 Gb/s-based infrastructure. To accommodate 40 Gb/s over the link optimized for 10 Gb/s, we propose applying a combination of super-FEC, carrier-suppressed return-to-zero, and pre-emphasis to the 40 Gb/s transponder. The transmission of 40 Gb/s DWDM channels over existing 10 Gb/s line-rate long-haul DWDM links, including $40{\times}40$ Gb/s transmission over KT's standard single-mode fiber optimized for 10 Gb/s achieves successful results. The proposed upgrading technique allows the Q-value margin for a 40 Gb/s line rate to be compatible with that of 10 Gb/s.

  • PDF

Elastic local buckling of thin-walled elliptical tubes containing elastic infill material

  • Bradford, M.A.;Roufegarinejad, A.
    • Interaction and multiscale mechanics
    • /
    • 제1권1호
    • /
    • pp.143-156
    • /
    • 2008
  • Elliptical tubes may buckle in an elastic local buckling failure mode under uniform compression. Previous analyses of the local buckling of these members have assumed that the cross-section is hollow, but it is well-known that the local buckling capacity of thin-walled closed sections may be increased by filling them with a rigid medium such as concrete. In many applications, the medium many not necessarily be rigid, and the infill can be considered to be an elastic material which interacts with the buckling of the elliptical tube that surrounds it. This paper uses an energy-based technique to model the buckling of a thin-walled elliptical tube containing an elastic infill, which elucidates the physics of the buckling phenomenon from an engineering mechanics basis, in deference to a less generic finite element approach to the buckling problem. It makes use of the observation that the local buckling in an elliptical tube is localised with respect to the contour of the ellipse in its cross-section, with the localisation being at the region of lowest curvature. The formulation in the paper is algebraic and it leads to solutions that can be determined by implementing simple numerical solution techniques. A further extension of this formulation to a stiffness approach with multiple degrees of buckling freedom is described, and it is shown that using the simple one degree of freedom representation is sufficiently accurate for determining the elastic local buckling coefficient.

Experimental analysis of an asymmetric reinforced concrete bridge under vehicular loads

  • Thambiratnam, D.P.;Brameld, G.H.;Memory, T.J.
    • Structural Engineering and Mechanics
    • /
    • 제9권1호
    • /
    • pp.17-35
    • /
    • 2000
  • Dynamic response of a three span continuous bridge has been determined by full scale experiments on the bridge. In the experiments, a heavy vehicle was driven across the bridge at different speeds and along different lanes of travel and the strains were recorded at different locations. The bridge was made of reinforced concrete and was asymmetric in plan and in elevation. Frequencies and modes of vibration excited by the vehicle were determined. The dependence of the dynamic amplification on bridge location and vehicle speed was investigated and dynamic amplifications up to 1.5 were recorded, which was higher than values predicted by bridge design codes. It was evident that when this asymmetric bridge was loaded by an asymmetric forcing function, higher modes, which are lateral and/or torsional in nature, were excited. Dynamic modulus of elasticity and the support stiffness influenced the natural frequencies of the bridge, which in turn influenced the dynamic amplifications. Larger than anticipated dynamic amplification factors and the excitation of lateral and/or torsional modes should be of interest and concern to bridge engineers.

Channel Allocation in Multi-radio Multi-channel Wireless Mesh Networks: A Categorized Survey

  • Iqbal, Saleem;Abdullah, Abdul Hanan;Hussain, Khalid;Ahsan, Faraz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권5호
    • /
    • pp.1642-1661
    • /
    • 2015
  • Wireless mesh networks are a special type of broadcast networks which cover the qualifications of both ad-hoc as well as infrastructure mode networks. These networks offer connectivity to the last mile through hop to hop communication and by comparatively reducing the cost of infrastructure in terms of wire and hardware. Channel assignment has always been the focused area for such networks specifically when using non-overlapping channels and sharing radio frequency spectrum while using multiple radios. It has always been a challenge for mesh network on impartial utilization of the resources (channels), with the increase in users. The rational utilization of multiple channels and multiple radios, not only increases the overall throughput, capacity and scalability, but also creates significant complexities for channel assignment methods. For a better understanding of research challenges, this paper discusses heuristic methods, measurements and channel utilization applications and also examines various researches that yield to overcome this problem. Finally, we highlight prospective directions of research.

Multi-stage structural damage diagnosis method based on "energy-damage" theory

  • Yi, Ting-Hua;Li, Hong-Nan;Sun, Hong-Min
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.345-361
    • /
    • 2013
  • Locating and assessing the severity of damage in large or complex structures is one of the most challenging problems in the field of civil engineering. Considering that the wavelet packet transform (WPT) has the ability to clearly reflect the damage characteristics of structural response signals and the artificial neural network (ANN) is capable of learning in an unsupervised manner and of forming new classes when the structural exhibits change, this paper investigates a multi-stage structural damage diagnosis method by using the WPT and ANN based on "energy-damage" theory, in which, the wavelet packet component energies are first extracted to be damage sensitive feature and then adopted as input into an improved back propagation (BP) neural network model for damage diagnosis in a step by step mode. To validate the efficacy of the presented approach of the damage diagnosis, the benchmark structure of the American Society of Civil Engineers (ASCE) is employed in the case study. The results of damage diagnosis indicate that the method herein is computationally efficient and is able to detect the existence of different damage patterns in the simulated experiment where minor, moderate and severe damages corresponds to involving in the loss of stiffness on braces or the removal bracing in various combinations.

An equivalent linear SDOF system for prediction of nonlinear displacement demands of non-ductile reinforced concrete buildings with shear walls

  • Saman Yaghmaei-Sabegh;Shabnam Neekmanesh;Nelson Lam;Anita Amirsardari;Nasser Taghizadieh
    • Structural Engineering and Mechanics
    • /
    • 제85권5호
    • /
    • pp.655-664
    • /
    • 2023
  • Reinforced concrete (RC) shear wall structures are one of the most widely used structural systems to resist seismic loading all around the world. Although there have been several efforts to provide conceptually simple procedures to reasonably assess the seismic demands of structures over recent decades, it seems that lesser effort has been put on a number of structural forms such as RC shear wall structures. Therefore, this study aims to represent a simple linear response spectrum-based method which can acceptably predict the nonlinear displacements of a non-ductile RC shear wall structure subjected to an individual ground motion record. An effective period and an equivalent damping ratio are introduced as the dynamic characteristics of an equivalent linear SDOF system relevant to the main structure. By applying the fundamental mode participation factor of the original MDOF structure to the linear spectral response of the equivalent SDOF system, an acceptable estimation of the nonlinear displacement response is obtained. Subsequently, the accuracy of the proposed method is evaluated by comparison with another approximate method which is based on linear response spectrum. Results show that the proposed method has better estimations for maximum nonlinear responses and is more utilizable and applicable than the other one.

Full-scale bridge expansion joint monitoring using a real-time wireless network

  • Pierredens Fils;Shinae Jang;Daisy Ren;Jiachen Wang;Song Han;Ramesh Malla
    • Structural Monitoring and Maintenance
    • /
    • 제9권4호
    • /
    • pp.359-371
    • /
    • 2022
  • Bridges are critical to the civil engineering infrastructure network as they facilitate movement of people, the transportation of goods and services. Given the aging of bridge infrastructure, federal officials mandate visual inspections biennially to identify necessary repair actions which are time, cost, and labor-intensive. Additionally, the expansion joints of bridges are rarely monitored due to cost. However, expansion joints are critical as they absorb movement from thermal effects, loadings strains, impact, abutment settlement, and vehicle motion movement. Thus, the need to monitor bridge expansion joints efficiently, at a low cost, and wirelessly is desired. This paper addresses bridge joint monitoring needs to develop a cost-effective, real-time wireless system that can be validated in a full-scale bridge structure. To this end, a wireless expansion joint monitoring was developed using commercial-off-the-shelf (COTS) sensors. An in-service bridge was selected as a testbed to validate the performance of the developed system compared with traditional displacement sensor, LVDT, temperature and humidity sensors. The short-term monitoring campaign with the wireless sensor system with the internet protocol version 6 over the time slotted channel hopping mode of IEEE 802.15.4e (6TiSCH) network showed reliable results, providing high potential of the developed system for effective joint monitoring at a low cost.

Sliding Mode Fuzzy Control을 사용한 바람에 의한 대형 구조물의 진동제어 (Sliding Mode Fuzzy Control for Wind Vibration Control of Tall Building)

  • 김상범;윤정방
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.79-83
    • /
    • 2000
  • A sliding mode fuzzy control (SMFC) with disturbance estimator is applied to design a controller for the third generation benchmark problem on an wind-excited building. A distinctive feature in vibration control of large civil infrastructure is the existence of large disturbances, such as wind, earthquake, and sea wave forces. Those disturbances govern the behavior of the structure, however, they cannot be precisely measured, especially for the case of wind-induced vibration control. Since the structural accelerations are measured only at a limited number of locations without the measurement of the wind forces, the structure of the conventional control may have the feed-back loop only. General structure of the SMFC is composed of a compensation part and a convergent part. The compensation part prevents the system diverge, and the convergent part makes the system converge to the sliding surface. The compensation part uses not only the structural response measurement but also the disturbance measurement, so the SMFC has a feed-back loop and a feed-forward loop. To realize the virtual feed-forward loop for the wind-induced vibration control, disturbance estimation filter is introduced. the structure of the filter is constructed based on an auto regressive model for the stochastic wind force. This filter estimates the wind force at each time instance based on the measured structural responses and the stochastic information of the wind force. For the verification of the proposed algorithm, a numerical simulation is carried out on the benchmark problem of a wind-excited building. The results indicate that the present control algorithm is very efficient for reducing the wind-induced vibration and that the performance indices improve as the filter for wind force estimation is employed.

  • PDF

혼합모드 무선랜에서의 동적 키 관리 방식 연구 (A Study on Dynamic Key Management in Mixed-Mode Wireless LAN)

  • 강유성;오경희;정병호;정교일;양대헌
    • 한국통신학회논문지
    • /
    • 제29권4C호
    • /
    • pp.581-593
    • /
    • 2004
  • 무선랜 시스템이 초고속 무선인터넷의 인프라로 자리 잡으면서 무선랜 보안에 관한 관심이 급속히 커가고 있다. 기존의 IEEE 802.11 기반의 무선랜 보안 요소라 할 수 있는 WEP 알고리즘의 취약점을 극복하기 위한 노력의 일환으로 Wi-Fi에서는 WPA 보안규격을 발표하였다. WEP 알고리즘을 사용하는 단말기와 WPA 지원 단말기가 동시에 존재하는 혼합모드 무선랜 환경에서는 각 단말기별 unicast용 pairwise 키 관리와 전체 단말기에 대한 broadcast용 group 키 관리가 훨씬 복잡하다. 본 논문에서는 pairwise 키와 group 키 관리를 위한 WPA authenticator 키 관리 상태머신의 취약점을 분석하고, 분석된 각각의 취약점을 극복할 수 있는 대응방안을 제시한다. 또한, 제시된 해결방안이 적용된 WPA authenticator 키 관리 상태머신의 재구성된 형태를 보인다. 본 논문에서 재구성한 키 관리 방식은 혼합모드 무선랜 환경에서 다양한 접속 방식의 단말기들에 대해서 group 키 교환과 group 키 업데이트 수행을 효과적으로 처리할 수 있는 토대를 제공한다.