• Title/Summary/Keyword: Infrared thermographic analysis

Search Result 30, Processing Time 0.021 seconds

Infrared Thermographic Diagnosis Mechanism for Fault Detection of Ball Bearing under Dynamic Loading Conditions (동적 하중조건에서 볼 베어링의 고장 탐지에 대한 적외선 열화상 진단메커니즘 고찰)

  • Seo, Jin-Ju;Yoon, Han-Vit;Kim, Dong-Yeon;Hong, Dong-Pyo;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.2
    • /
    • pp.134-138
    • /
    • 2011
  • Fault detection for dynamic loading conditions of rotational machineries was considered from the contactless, non-destructive infrared thermographic method, rather than the traditional diagnosis method. In this paper, by applying a rotating deep-grooved ball bearing, passive thermographic experiment was performed as an alternative way proceeding the traditional fault monitoring. In addition, the thermographic experiments were compared with the vibration spectrum analysis to evaluate the efficiency of the proposed method. Based on the results, it was concluded the temperature characteristics of the ball bearing under dynamic loading conditions were analyzed thoroughly.

The Cut Off Values for Diagnosing Hot flashes by Using Digital Infrared Thermographic Imaging (적외선 체열 촬영을 이용한 안면홍조 진단의 절단값 산정)

  • Jo, Jun-Young;Hwang, Deok-Sang;Lee, Chang-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub;Lee, Jin-Moo
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.26 no.3
    • /
    • pp.85-92
    • /
    • 2013
  • Objectives: The purpose of this study is to find diagnostic points and define the cut off values of hot flashes by using digital infrared thermographic imaging. Methods: Thermographic images of 75 patients with hot flashes (HF, n=35) and non-hot flashes (NHF, n=40) were retrospectively reviewed. We used the temperature difference between Ex-HN3 and CV17, LU4, CV12, CV4 for diagnosing hot flashes. The temperature differences of between two groups were analysed using independent samples t-tests. The cut off values were calculated by received operating characteristic curve analysis. Analyses were undertaken using SPSS version 17.0. and p-value of <0.05 was considered significant. Results: The temperature difference Ex-HN3 and LU4 were the most significantly different between groups (p<0.001). Using receiver operating characteristic curve analysis, the sensitivity, specificity, and area under the curve were 65.7%, 72.5%, 0.729, respectively. The optimum cut off value was defined as $1.00^{\circ}C$. Conclusions: These results suggest that the digital infrared thermographic imaging is a reliable instrument for estimating hot flashes.

Prediction Method of Rebar Corrosion Level Using Infrared Thermographic Data according to Increasing Rate of Early Temperature (적외선 열화상 데이터를 이용한 초기온도 상승률에 따른 철근의 부식률 예측 기법)

  • Yun, Ju-Young;Paik, In-Kwan;Cho, Seung-Ho;Roh, Young-Sook;Chung, Lan
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.425-428
    • /
    • 2007
  • In order to measure corrosion level of reinforcement rebar which is inside reinforced concrete structure, infrared thermographic technique was employed. Experimental test parameters were ambient temperatures, various levels of corrosion states. After analysis of temperature distributions of concrete surface, the amount of heat flux from the concrete surface is directly proportional to the corrosion level which is inside of concrete.

  • PDF

Study on NDT Fault Diagnosis of the Ball Bearing under Stage of Abrasion by Infrared Thermography (마모 단계의 볼 베어링에 대한 적외선 열화상 비파괴 결함 진단 연구)

  • Seo, Jin-Ju;Hong, Dong-Pyo;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.7-11
    • /
    • 2012
  • For fault detection about the abrasion stage of rotational machineries under the dynamic loading conditions unlike the traditional diagnosis method used in the past decade, the infrared thermographic method with its distinctive advantages in non-contact, non-destructive, and visible aspects is proposed. In this paper, by applying a rotating deep-grooved ball bearing, passive thermographic experiments were conducted as an alternative way to proceeding the traditional fault monitoring on spectrum analyzer. As results, the thermographic experiment was compared with the traditional vibration spectrum analysis to evaluate the efficiency of the proposed method. Based on the results obtained as NDT, the temperature characteristics and abnormal fault detections of the ball bearing according to the abrasion stage were analyzed.

Infrared Thermographic Monitoring for Failure Characterization in Railway Axle Materials (철도차량 차축 재료의 파괴특성 적외선열화상 모니터링)

  • Kim, Jeong-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.116-120
    • /
    • 2010
  • The wheelset, an assembly of wheel and axle, is one of important parts in railway bogie, directly related with the running safety of railway rolling stock. In this investigation, the tensile failure behavior of railway axle materials was investigated. The tensile coupons were prepared from the actual rolling stock parts, which were operated over 20 years. The tensile testing was performed according to the KS guideline. During tensile testing, an infrared camera was employed to monitor temperature changes in specimen as well as demonstrate temperature contour in terms of infrared thermographic images. The thermographic images of tensile specimens showed comparable results with mechanical behavior of tensile materials. In this paper, the failure mode and behavior of railway axle materials were provided with the aid of infrared thermography technique.

The Cut Off Values for Diagnosing Cold Hypersensitivity of Hands by Using Digital Infrared Thermographic Imaging (적외선 체열 촬영을 이용한 수부냉증 진단의 절단값 산정)

  • Jo, Jun-Young;Park, Kyoung-Sun;Lee, Chang-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub;Lee, Jin-Moo
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.25 no.3
    • /
    • pp.95-102
    • /
    • 2012
  • Purpose: The purpose of this study is to define the cut off values of cold hypersensitivity of hands by using digital infrared thermographic imaging(DITI). Methods: Thermographic images of 130 patients with cold hypersensitivity of hands(CHHG, n=65) and non-cold hypersensitivity of hands(NCHHG, n=65) were retrospectively reviewed. We used the temperature difference the palm(PC8) and the upper arm(LU4) for diagnosing cold hypersensitivity of hands. The temperature differences of between two groups were analysed using independent samples t-tests. The cut off values were calculated by ROC curve analysis. Analyses were undertaken using SPSS version 17.0. P value of < 0.05 was considered significant. Results: The temperature difference the palm(PC8) and the upper arm(LU4) were significantly different between groups(p < 0.001). Using receiver operating characteristic curve analysis, the sensitivity, specificity, and area under the curve were 70.8%, 73.8%, respectively both hands. The AUC was 0.822 on right hand and 0.818 on left hand. The optimum cut-off value was defined as $-0.05^{\circ}C$. Conclusions: These results suggest that DITI is a reliable instrument for estimating the cold hypersensitivity of hands.

Hot Spot Analysis on Brake Disc Using Infrared Camera (적외선카메라를 이용한 제동 디스크 열크랙 분석)

  • Kim, Jeong-Guk;Goo, Byeong-Choon;Kwon, Sung-Tae
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.964-968
    • /
    • 2008
  • Infrared thermography using high-speed infrared camera has been recognized as a powerful method for various potential applications, such as nondestructive inspection, failure analysis, stress analysis, and medical fields, due to non-contact, high-speed, and high spatial resolution at various temperature ranges. In this investigation, damage evolution due to generation of hot spots on railway brake disc was investigated using the infrared thermography method. A high-speed infrared camera was used to measure the surface temperature of brake disc as well as for in-situ monitoring of hot spot evolution. From the thermographic images, the observed hot spots and thermal damage of railway brake disc during braking operation were qualitatively analyzed. Moreover, in this investigation, the previous experimental and theoretical studies on hot spots phenomenon were reviewed, and the current experimental results were introduced and compared with theoretical prediction.

  • PDF

Detection of Subsurface Defects in Metal Materials Using Infrared Thermography; Image Processing and Finite Element Modeling

  • Ranjit, Shrestha;Kim, Won Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.128-134
    • /
    • 2014
  • Infrared thermography is an emerging approach to non-contact, non-intrusive, and non-destructive inspection of various solid materials such as metals, composites, and semiconductors for industrial and research interests. In this study, data processing was applied to infrared thermography measurements to detect defects in metals that were widely used in industrial fields. When analyzing experimental data from infrared thermographic testing, raw images were often not appropriate. Thus, various data analysis methods were used at the pre-processing and processing levels in data processing programs for quantitative analysis of defect detection and characterization; these increased the infrared non-destructive testing capabilities since subtle defects signature became apparent. A 3D finite element simulation was performed to verify and analyze the data obtained from both the experiment and the image processing techniques.

[Retracted]The effect of Massage and Paraffin on Cold Hypersensitivity Patient ([논문표절]수족냉증에 적용한 마사지와 파라핀의 효과)

  • Roh, Hyo-lyun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2017.05a
    • /
    • pp.101-102
    • /
    • 2017
  • This study of purpose was to evaluate the changes in hands and feet temperature by applying massage and paraffin bath.. The subject of this study was 30 university healthy students. Subjects were divided into paraffin bath group and massages group. The digital infrared thermographic imaging was used for thermographic analysis. The visual analog scale was used for subjective information about the degree of cold sensitivity and cold stress test was used for analyzing the temperature recovery rate. After the interventions showed that temperature difference of the right hand and temperature difference of the left hand are less in the paraffin group than the massage group. When applied paraffin bath and massage to the cold hypersensitivity patient the massage group showed difference in the visual analog scale and the paraffin group showed difference in the temperature of the right hand, left hand, left foot and in the visual analog scale. Paraffin bath treatment seems to be useful to patients with cold hypersensitivity on hands and feet.

Thermographic analysis of failure for different rock types under uniaxial loading

  • Kirmaci, Alper;Erkayaoglu, Mustafa
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.503-512
    • /
    • 2020
  • Mining activities focus on the production of mineral resources for energy generation and raw material requirements worldwide and it is a known fact that shallow reserves become scarce. For this reason, exploration of new resources proceeds consistently to meet the increasing energy and raw material demand of industrial activities. Rock mechanics has a vital role in underground mining and surface mining. Devices and instruments used in laboratory testing to determine rock mechanics related parameters might have limited sensing capability of the failure behavior. However, methodologies such as, thermal cameras, digital speckle correlation method and acoustic emission might enable to investigate the initial crack formation in detail. Regarding this, in this study, thermographic analysis was performed to analyze the failure behaviors of different types of rock specimens during uniaxial compressive strength experiments. The energy dissipation profiles of different types of rocks were characterized by the temperature difference recorded with an infrared thermal camera during experiments. The temperature increase at the failure moment was detected as 4.45℃ and 9.58℃ for andesite and gneiss-schist specimens, respectively. Higher temperature increase was observed with respect to higher UCS value. Besides, a temperature decreases of about 0.5-0.6℃ was recorded during the experiments of the marble specimens. The temperature change on the specimen is related to release of radiation energy. As a result of the porosity tests, it was observed that increase in the porosity rate from 5.65% to 20.97% can be associated to higher radiation energy released, from 12.68 kJ to 297.18 kJ.