• Title/Summary/Keyword: Infrared thermal Video

Search Result 25, Processing Time 0.02 seconds

Thermal Imager Implementation Using Infrared Sensor (적외선 센서를 이용한 열상장비의 구현)

  • Yu, W.K.;Yoon, E.S.;Kim, C.W.;Song, I.S.;Hong, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1250-1254
    • /
    • 1992
  • This paper describes the designed and fabricated thermal imaging system with the SPRITE(Signal PRocessing in The Element) detector, operating in the 3-12 micron band. This system consists of an afocal telescope, a scan unit containing the SPRITE detector, an electronic processor unit and a cooler. The optical scan system utilizing rotating polygon and oscillating mirror, is 2-dimensional serial/parallel scan type using five elements of the detector. And the electronic processor unit performs digital scan conversion to reform the parallel data stream into serial analog data compatable with conventional RS-170 video. The scan field of view is 40 ${\times}$ 26.7 and the MRTD(Minium Resolvable Temperature Difference) is 0.6 K at 7.5 cycles/mm. The acquired thermal image indicates that this system has a satisfactory performance.

  • PDF

Thermal Infrared Image Analysis for Breast Cancer Detection

  • Min, Sedong;Heo, Jiyoung;Kong, Youngsun;Nam, Yunyoung;Ley, Preap;Jung, Bong-Keun;Oh, Dongik;Shin, Wonhan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1134-1147
    • /
    • 2017
  • With the rise in popularity of photographic and video cameras, an increasing number of fields are now using thermal imaging cameras. One such application is in the diagnosis of breast cancer, as thermal imaging provides a low-cost and noninvasive method. Thermal imaging is particularly safe for pregnant women, and those with large, dense, or sensitive breasts. In addition, excessive doses of radiation, which may be used in traditional methods of breast cancer detection, can increase the risk of cancer. This paper presents one method of breast cancer detection. Breast images were taken using a thermal camera, with preliminary experiments conducted on Cambodian women. Then the experimental results were analyzed and compared using Shannon entropy and logistic regression.

Thermal Performance Evaluation at corners of the External wall of Modern New Han-oks using Temperature Difference Ratio inside (내표면 온도차 비율(TDRi) 분석을 통한 현대 신한옥 외벽 모서리 부위 단열성능 평가)

  • Lee, Ju-Yeob;Song, Min-Jeong;Lee, Tai-Gang;Kim, Sun-Woo;Cheon, Deuk-Youm
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.103-112
    • /
    • 2016
  • Recently, many New Han-oks have been constructing in all over the country to popularize as a type of green house. But, achievement of thermal performance of external wall is still the very important issue to become popular. Purpose: The purpose of this study is to verify the thermal performance level of modern New Han-ok through Temperature Difference Ratio inside(TDRi) analysis at corners of the external wall in Han-ok. Method: To achieve this goal, measurements were carried out in 12 Han-oks(experimental mock-up(1), exhibition Han-ok(1), happy village Han-oks(10)) by taking a infra-red thermography using thermal video system. Following are analysis items about connection joint between wall and wood columns of external wall conditions; the part between external wall and external wall(2D), external wall and ceiling(or floor)(2D), 2 external walls and ceiling(or floor)(3D) and so on. Result: It was analyzed that the probability of condensation at most of connection joint appear high and TDRi of 3D corners is higher than that of 2D corners in general. It means that the development of construction techniques about connection joint between wood columns and external wall is still required. The results of this study may be used to improve the construction technology of new Han-ok and as a basis for the specifying the desired thermal comfort environment of dwelling.

Potential Efficacy of Multiple-shot Long-pulsed 1,064-nm Nd:YAG in Nonablative Skin Rejuvenation: A Pilot Study

  • Kim, Young-Koo;Lee, Hae-Jin;Kim, Jihee
    • Medical Lasers
    • /
    • v.9 no.2
    • /
    • pp.159-165
    • /
    • 2020
  • Background and Objectives The ultimate goal in current skin rejuvenation practice is to achieve a good result with minimal pain and downtime. Nonablative skin rejuvenation (NSR) is one technique. The efficacy of the long-pulsed 1064 nm Nd:YAG laser (LPNDY) has not been assessed in NSR. Materials and Methods Three target areas were selected (bilateral cheeks and glabellar region) in six volunteer subjects. A LPNDY with an integral skin temperature monitor delivered three stacked shots to each target area (1064 nm, 12 mm spot, 13 J/cm2, 1 Hz) without any skin cooling or anesthesia. The skin temperature was recorded before, during, and after each set of shots using the system monitor and in real-time using a high-sensitivity (±0.001℃) near-infrared video camera. The skin reaction was observed with the naked eye, and pain and discomfort were assessed by the subjects during and after treatment. Results The subjects reported a mild feeling of heat with no discomfort during or after the test treatments. Mild erythema was observed around the treatment areas, without noticeable edema. A series of three ascending skin temperature stepwise peaks, with a decrease in skin temperature towards the baseline after the third shot, was observed consistently. The mean temperatures for shots 1, 2, and 3 for the cheeks were 39.5℃, 42.0℃, and 44.4℃, respectively, and for the glabella, 40.8℃, 43.9℃, and 46.2℃, respectively. Similar ranges were indicated on the system integral temperature monitor. Conclusion A set of three stacked pulses with the LPNDY at a low fluence achieved ideal dermal temperatures to achieve some dermal remodeling but without any downtime or adverse events. The temperature data from the integral thermal sensor matched the video camera measurements with practical accuracy for skin rejuvenation requirements. These data suggest that LPNDY would satisfy the necessary criteria to achieve effective NSR, but further studies will be needed to assess the actual results in clinical practice.

Distance Measurement of Small Moving Object using Infrared Stereo Camera (적외선 스테레오 카메라를 이용한 소형 이동체의 거리 측정)

  • Oh, Jun-Ho;Lee, Sang-Hwa;Lee, Boo-Hwan;Park, Jong-Il
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.53-61
    • /
    • 2012
  • This paper proposes a real-time distance measurement system of high temperature and high speed target using infrared stereo camera. We construct an infrared stereo camera system that measure the difference between target and background temperatures for automatic target measurement. First, the proposed method detects target region based on target motion and intensity variation of local region using difference between target and background temperatures. Second, stereo matching by left and right target information is used to estimate disparity about real-time distance of target. In the proposed method using infrared stereo camera system, we compare distances in three dimension trajectory measuring instrument and in infrared stereo camera measurement. In this experiment from three video data, the result shows an average 9.68% distance error rate. The proposed method is suitable for distance and position measurement of varied targets using infrared stereo system.

Infrared Thermal Video Stabilization Performance Comparison (열화상 영상 안정화 성능 비교)

  • Park, Chan-hyeok;Kwon, Hyuk-shin;Kang, Seok-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.101-104
    • /
    • 2015
  • Motion vector is that comparing a frame between previous frame and current one about how much moved. Using this motion vector, if move the image object of current frame to former frame, it could be corrected to shake from hand and camera shaking. On this thesis, compared efficiency of block matching using SAD(Sum of Absolute Difference) equation as picking out the motion vector, matching using phase correlation, matching using feature point, block matching using bitplane.

  • PDF

Non Destructive Technique for Steel Corrosion Detection Using Heat Induction and IR Thermography (열유도 장치와 적외선 열화상을 이용한 철근부식탐지 비파괴 평가기법)

  • Kwon, Seung Jun;Park, Sang Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.40-48
    • /
    • 2012
  • Steel corrosion in concrete is a main cause of deterioration and early failure of concrete structures. A novel integration of electromagnetic heat induction and infrared (IR) thermography is proposed for nondestructive detection of steel corrosion in concrete, by taking advantage of the difference in thermal characteristics of corroded and non-corroded steel. This paper focuses on experimental investigation of the concept. An inductive heater is developed to remotely heat the embedded steel from concrete surface, which is integrated with an IR camera. Concrete samples with different cover depths are prepared. Each sample is embedded with a single rebar in the middle, resulting an identical cover depth from the front and the back surfaces, which enable heat induction from one surface and IR imaging from the other simultaneously. The impressed current (IC) method is adopted to induce accelerated corrosion on the rebar. IR video images are recorded during the entire heating and cooling periods. The test results demonstrate a clear difference in thermal characteristics between corroded and non-corroded samples. The corroded sample shows higher rates of heating and cooling than those of the non-corroded sample. This study demonstrates a potential for nondestructive detection of rebar corrosion in concrete.

Failure Mechanism and Long-Term Hydrostatic Behavior of Linear Low Density Polyethylene Tubing (선형저밀도 폴리에틸렌 튜빙의 파손 메커니즘과 장기 정수압 거동)

  • Weon, Jong-Il;Chung, Yu-Kyoung;Shin, Sei-Moon;Choi, Kil-Yeong
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.440-445
    • /
    • 2008
  • The failure mechanism and failure morphology of linear low density polyethylene (LLDPE) tubing under hydrostatic pressure were investigated. Microscopic observations using video microscope and scanning electron microscope indicate that the failure mode is a brittle fracture including cracks propagated from inner wall to outer wall. In addition, oxidation induction time and Fourier transform infrared spectroscopy results show the presence of exothermic peak and the increase in carbonyl index on the surface of fractured LLDPE tubing, due to thermal-degradation. An accelerated life test methodology and testing system for LLDPE tubing are developed using the relationship between stresses and life characteristics by means of thermal acceleration. Statistical approaches using the Arrhenius model and Weibull distribution are implemented to estimate the long-term life time of LLDPE tubing under hydrostatic pressure. Consequently, the long-term life time of LLDPE tubing at the operating temperature of $25^{\circ}C$ could be predicted and also be analyzed.

The Effect of Impact Velocity on Droplet-wall Collision Heat Transfer Above the Leidenfrost Point Temperature (Leidenfrost 지점 온도 이상에서 액적-벽면 충돌 열전달에 대한 충돌 속도의 영향)

  • Park, Jun-seok;Kim, Hyungdae;Bae, Sung-won;Kim, Kyung Doo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.567-578
    • /
    • 2015
  • Single droplet-wall collision heat transfer characteristics on a heated plate above Leidenfrost temperature were experimentally investigated considering the effects of impact velocity. The collision characteristics of the droplet impinged on the heated wall and the changes in temperature distribution were simultaneously measured using synchronized high-speed video and infrared cameras. The surface heat flux distribution was obtained by solving the three-dimensional transient heat conduction equation for the heated substrate using the measured surface temperature data as the boundary condition for the collision surface. As the normal impact velocity increased, heat transfer effectiveness increased because of an increase in the maximum spreading diameter and a decrease in the vapor film thickness between the droplet and heated wall. For We < 30, droplets stably rebounded from a heated wall without breakup. However, the droplets broke up into small droplets for We > 30. The tendency of the heat transfer to increase with increasing impact velocity was degraded by the transition from the rebounding region to the breakup region; this was resulted from the reduction in the effective heat transfer area enlargement due to the breakup phenomenon.

An Analysis Method on Injury Symptoms Utilizing Infrared Thermal Imaging under the Freezing Stress of Hedera helix L. (헤데라 헬릭스 식물의 적외선 열영상에 의한 저온 및 한풍피해에 관한 연구)

  • Seong, Bu-Geun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.6
    • /
    • pp.173-179
    • /
    • 2012
  • The experiments, which analyze the injury symptoms and diagnose growth conditions utilizing IRVT and analyzing each parts of H. helix L., had been held under a low temperature. Greenhouse and outdoor growing Genus hedera had been prepared and compared with each Genus hedera's peak and bottom leaves' surface temperature under the experimental categories $-6^{\circ}C$ and $-12^{\circ}C$. As results, analyzing the surface thermal property of peak part leaves' of outdoor growing Genus hedera, at experimental categories $-6^{\circ}C$, $-12^{\circ}C$ were ranged from $-2^{\circ}C{\sim}-7^{\circ}C$ and $-2^{\circ}C{\sim}-15^{\circ}C$. On the other hand, the surface thermal property of bottom part leaves at experimental categories $-6^{\circ}C$, $-12^{\circ}C$ were ranged $-2^{\circ}C{\sim}-11^{\circ}C$ and $-1^{\circ}C{\sim}-12^{\circ}C$. It appears that the thermal properties of leaves' surface on $-6^{\circ}C$ peaks and $-12^{\circ}C$ bottoms were more broadband than bottoms and peaks. It means that the peaks were more sensitive than bottoms, as like $-2^{\circ}C{\sim}-15^{\circ}C$, $-1{\sim}-12^{\circ}C$. Moreover, as similar results had seen to leaves surface temperature added to cold wind conditions. How the cold wind damaged the outdoor growing Genus hedera, analyzed the surface thermal property by IRVT data under $0^{\circ}C$, $-2^{\circ}C$, $-4^{\circ}C$ condition, it resulted to $-6.2^{\circ}C$, $-6.8^{\circ}C$, $-7.5^{\circ}C$. It appeared more $3.5{\sim}6.2^{\circ}C$ low temperature than experimental setting point. In addition, each parts thurmal property of peaks and bottoms was not similar, it referred to each parts' sensitivities of low temperature were different on the peak and bottom leaves surface temperature.