• Title/Summary/Keyword: Infrared microscopy

Search Result 547, Processing Time 0.029 seconds

Development and Evaluation of Natural Hydroxyapatite Ceramics Produced by the Heat Treatment of Pig Bones

  • Lim, Ki-Taek;Kim, Jin-Woo;Kim, Jangho;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.227-234
    • /
    • 2014
  • Purpose: The aim of this research was to develop and evaluate natural hydroxyapatite (HA) ceramics produced from the heat treatment of pig bones. Methods: The properties of natural HA ceramics produced from pig bones were assessed in two parts. Firstly, the raw materials were characterized. A temperature of $1,200^{\circ}C$ was chosen as the calcination temperature. Fine bone powders (BPs) were produced via calcinations and a milling process. Sintered BPs were then characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectroscopy, and a 2-year in vitro degradability test. Secondly, an indirect cytotoxicity test was conducted on human osteoblast-like cells, MG63, treated with the BPs. Results: The average particle size of the BPs was $20{\pm}5{\mu}m$. FE-SEM showed a non-uniform distribution of the particle size. The phase obtained from XRD analysis confirmed the structure of HA. Elemental analysis using XRF detected phosphorus (P) and calcium (Ca) with the Ca/P ratio of 1.6. Functional groups examined by FTIR detected phosphate ($PO{_4}^{3-}$), hydroxyl ($OH^-$), and carbonate ($CO{_3}^{2-}$). The EDX, XRF, and FTIR analysis of BPs indicated the absence of organic compounds, which were completely removed after annealing at $1,200^{\circ}C$. The BPs were mostly stable in a simulated body fluid (SBF) solution for 2 years. An indirect cytotoxicity test on natural HA ceramics showed no threat to the cells. Conclusions: In conclusion, the sintering temperature of $1,200^{\circ}C$ affected the microstructure, phase, and biological characteristics of natural HA ceramics consisting of calcium phosphate. The Ca-P-based natural ceramics are bioactive materials with good biocompatibility; our results indicate that the prepared HA ceramics have great potential for agricultural and biological applications.

Growth of Hexagonal Boron Nitride Thin Films on Silicon Using a Single Source Precursors

  • Boo, Jin-Hyo;Lee, Soon-Bo;Casten Rohr;Wilson Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.120-120
    • /
    • 1998
  • Boron nitride (BN) films have attracted a growing interest for a variety of t technological applications due to their excellent characteristics, namely hardness, c chemical inertness, and dielectrical behavior, etc. There are two crystalline phases 1551; of BN that are analogous to phases of carbon. Hexagonal boron nitride (h-BN) has a a layered s$\sigma$ucture which is spz-bonded structure similar to that of graphite, and is t the stable ordered phase at ambient conditions. Cubic boron nitride (c-BN) has a z zinc blende structure with sp3-bonding like as diamond, 따ld is the metastable phase a at ambient conditions. Among of their prototypes, especially 삼Ie c-BN is an i interesting material because it has almost the same hardness and thermal c conductivity as di없nond. C Conventionally, significant progress has been made in the experimental t techniques for synthesizing BN films using various of the physical vapor deposition 밍ld chemical vapor deposition. But, the major disadvantage of c-BN films is that t they are much more difficult to synthesize than h-BN films due to its narrow s stability phase region, high compression stress, and problem of nitrogen source c control. Recent studies of the metalorganic chemical vapor deposition (MOCVD) of I III - V compound have established that a molecular level understanding of the d deposition process is mandatory in controlling the selectivity parameters. This led t to the concept of using a single source organometallic precursor, having the c constituent elements in stoichiometric ratio, for MOCVD growth of 삼Ie required b binary compound. I In this study, therefore, we have been carried out the growth of h-BN thin f films on silicon substrates using a single source precursors. Polycrystalline h-BN t thin films were deposited on silicon in the temperature range of $\alpha$)() - 900 $^{\circ}$C from t the organometallic precursors of Boron-Triethylamine complex, (CZHs)3N:BRJ, and T Tris(dimethylamino)Borane, [CH3}zNhB, by supersonic molecular jet and remote p plasma assisted MOCVD. Hydrogen was used as carrier gas, and additional nitrogen w was supplied by either aDlIDonia through a nozzle, or nitrogen via a remote plasma. T The as-grown films were characterized by Fourier transform infrared spectroscopy, x x-ray pthotoelectron spectroscopy, Auger electron spectroscopy, x-ray diffraction, t transmission electron diffraction, optical transmission, and atomic force microscopy.roscopy.

  • PDF

Mechanical and Oxygen Permeation Properties of Layered Double Hydroxide/Ethylene Vinyl Acetate Nanocomposite Membranes (Mg-Al Layered Double Hydroxide/Ethylene Vinyl Acetate 나노복합막의 기계적 특성과 기체투과 특성에 관한 연구)

  • Hwang, Ji-Young;Lee, Sang-Hyup;Lee, Jong-Suk;Hong, Se-Ryung;Lee, Hyun-Kyung
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.151-158
    • /
    • 2013
  • The effect of layered double hydroxides (LDH) on the gas separation properties of ethylene vinyl acetate copolymer was investigated. Mg-Al LDH/EVA nanocomposite membranes were prepared from solution intercalation using organically modified LDH (DS-LDH). Dodecyl sulfate (DS)-LDH was obtained by the intercalation of DS anion in the interlayer. The nanocomposite structure has been elucidated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). XRD pattern clearly shows that the DS-LDH layers are disorderly well dispersed in the EVA matrix. The maximum tensile strength and elongation of the LDH/EVA nanocomposite membrane were found with the LDH content 3 wt%. The thermal properties of nanocompostie membrane were enhanced by the incorporation of LDH in EVA matrix. Gas permeation of LDH/EVA nanocomposite membranes with LDH contents of 1, 3, 5 wt% was studied for $O_2$ and $CO_2$ single gases. The presence of 3 wt% LDH decreased $O_2$ permeability by up to 53% compared to the EVA membrane. In spite of barrier property of nanocomposite membrane, however, the gas permeability for $CO_2$ was increased due to its strong affinity with the residual OH groups on the LDH.

Rare Metal Occurrences within the Anorthosite in the Hadong-Sanchong area, Kyungnam Province, Korea (하동-산청지역 회장암에 배태된 희유금속자원에 관한 연구)

  • Kim, Won-Sa;Jeong, Ji-Gon;Lee, Gang-Ho;Watkinson, D.H.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.14-21
    • /
    • 1992
  • Allanite crystals rich in rare-earth elements(REE) occur in soil developed on top of anorthositic rocks in the Jungsu-ri area of Okjong-myun, Hadong-run, where large Ti orebodies are embedded in the bed rock. In this study allanite is investigated mainly by transmitted light microscopy, electron microprobe analysis, atomic absoption spectrophotometry, X-ray diffraction, infrared spectrocopy. In addition, its specific gravity and micro=indentation hardness value are measured. Allanite occurs with max. dimension of $3cm{\times}6cm$ and coexists with quartz, epidote, zircon, biotite and muscovite. It shows nearly nonmetamict crystallinity, although ${\alpha}$-particles bombardment from the disintegration of the radioactive element Th is detected by an autoradiography. The allanite is particularly enriched in REE(19.88-23.99 wt.%), but is deficient in CaO(8.35-10.29wt.%). Genesis of the allanite in this area is not understood yet. It is, however, assumed to have been formed from magmatic fluid rich in REE and Ti, based on the facts that it ocexists with zircon and that it has high $TiO_2$(0.89-1.13 wt.%) whose concentration is significant in the country rocks.

  • PDF

RF and Optical properties of Graphene Oxide

  • Im, Ju-Hwan;Rani, J.R.;Yun, Hyeong-Seo;O, Ju-Yeong;Jeong, Yeong-Mo;Park, Hyeong-Gu;Jeon, Seong-Chan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.68.1-68.1
    • /
    • 2012
  • The best part of graphene is - charge-carriers in it are mass less particles which move in near relativistic speeds. Comparing to other materials, electrons in graphene travel much faster - at speeds of $10^8cm/s$. A graphene sheet is pure enough to ensure that electrons can travel a fair distance before colliding. Electronic devices few nanometers long that would be able to transmit charge at breath taking speeds for a fraction of power compared to present day CMOS transistors. Many researches try to check a possibility to make it a perfect replacement for silicon based devices. Graphene has shown high potential to be used as interconnects in the field of high frequency electrical devices. With all those advantages of graphene, we demonstrate characteristics of electrical and optical properties of graphene such as the effect of graphene geometry on the microwave properties using the measurements of S-parameter in range of 500 MHz - 40 GHz at room temperature condition. We confirm that impedance and resistance decrease with increasing the number of graphene layer and w/L ratio. This result shows proper geometry of graphene to be used as high frequency interconnects. This study also presents the optical properties of graphene oxide (GO), which were deposited in different substrate, or influenced by oxygen plasma, were confirmed using different characterization techniques. 4-6 layers of the polycrystalline GO layers, which were confirmed by High resolution transmission electron microscopy (HRTEM) and electron diffraction analysis, were shown short range order of crystallization by the substrate as well as interlayer effect with an increase in interplanar spacing, which can be attributed to the presence of oxygen functional groups on its layers. X-ray photoelectron Spectroscopy (XPS) and Raman spectroscopy confirms the presence of the $sp^2$ and $sp^3$ hybridization due to the disordered crystal structures of the carbon atoms results from oxidation, and Fourier Transform Infrared spectroscopy (FTIR) and XPS analysis shows the changes in oxygen functional groups with nature of substrate. Moreover, the photoluminescent (PL) peak emission wavelength varies with substrate and the broad energy level distribution produces excitation dependent PL emission in a broad wavelength ranging from 400 to 650 nm. The structural and optical properties of oxygen plasma treated GO films for possible optoelectronic applications were also investigated using various characterization techniques. HRTEM and electron diffraction analysis confirmed that the oxygen plasma treatment results short range order crystallization in GO films with an increase in interplanar spacing, which can be attributed to the presence of oxygen functional groups. In addition, Electron energy loss spectroscopy (EELS) and Raman spectroscopy confirms the presence of the $sp^2$ and $sp^3$ hybridization due to the disordered crystal structures of the carbon atoms results from oxidation and XPS analysis shows that epoxy pairs convert to more stable C=O and O-C=O groups with oxygen plasma treatment. The broad energy level distribution resulting from the broad size distribution of the $sp^2$ clusters produces excitation dependent PL emission in a broad wavelength range from 400 to 650 nm. Our results suggest that substrate influenced, or oxygen treatment GO has higher potential for future optoelectronic devices by its various optical properties and visible PL emission.

  • PDF

Preparation and Release Behavior of Atorvastatin Calcuim - Encapsulated Polyoxalate Microspheres (아토르바스타틴 칼슘을 함유한 폴리옥살레이트 미립구의 제조 및 방출거동)

  • Lee, Cheon Jung;Kim, Su Young;Lee, Hyun Gu;Yang, Jaewon;Park, Jin Young;Cha, Se Rom;Lim, Dong-Kwon;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.656-663
    • /
    • 2014
  • Atorvastatin calcium-loaded polyoxalate (POX) microspheres were prepared by an emulsion solvent-evaporation/ extraction method of oil-in-oil-in-water ($O_1/O_2/W$) for sustained release. We investigated the release behavior according to initial drug ratio, molecular weight ($M_w$) and concentration of POX and concentration of emulsifier. The microsphere was characterized on the surface, the cross-section morphology and the behavior of atorvastatin calcium release for 10 days by scanning electron microscopy (SEM) and high performance liquid chromatography (HPLC). The analysis of crystallization was analyzed to use X-ray diffraction (XRD), differential scanning calorimeter (DSC) and Fourier transform infrared (FTIR). These results showed that the release behaviors can be controlled by preparation conditions.

Swelling Ratio and Mechanical Properties of SBR/organoclay Nanocomposites according to the Mixing Temperature; using 3-Aminopropyltriethoxysilane as a Modifier and the Latex Method for Manufacturing (유기화제로 3-aminopropyltriethoxysilane 을 이용하여 라텍스법으로 제조된 SBR/organoclay 컴파운드의 혼련 온도에 따른 팽윤도 및 기계적 물성)

  • Kim, Wook-Soo;Park, Deuk-Joo;Kang, Yun-Hee;Ha, Ki-Ryong;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.112-121
    • /
    • 2010
  • In this study, styrene butadiene rubber(SBR)/organoclay nanocomposites were manufactured using the latex method with 3-aminopropyltriethoxysilane(APTES) as a modifier. The X-ray diffraction(XRD), transmission electron microscopy(TEM) images, Fourier transform infrared(FTIR) spectroscopy, swelling ratio and mechanical properties were measured in order to study the interaction between filler and rubber according to the mixing temperature in the internal mixer. In the case of SBR/APTES-MMT compounds, the dispersion of the silicates within the rubber matrix was enhanced, and thereby, the mechanical properties were improved. The characteristic bands of Si-O-C in APTES disappeared after hydrolysis reaction in the MMT-suspension solution and the peak of hydroxyl group was increased. Therefore the formation of chemical bonds between the hydroxyl group generated from APTES on the silicate surface and the ethoxy group of bis(triethoxysilylpropyl) tetrasulfide(TESPT) was possible. Consequently, the 300% modulus of SBR/APTES-MMT compounds was further improved in the case of using TESPT as a coupling agent. However, the silanization reaction between APTES and TESPT was not affected significantly according to the increase of mixing temperature in the internal mixer.

Characterization of B-doped a-SiC:H Thin Films Grown by Plasma-Enhanced Chemical Vapor Deposition (플라즈마 화학증착법으로 제조된 B-doped a-SiC:H 박막의 물성)

  • Kim, Hyeon-Cheol;Sin, Hyeok-Jae;Lee, Jae-Shin
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.1006-1011
    • /
    • 1999
  • B-doped hydrogenated amorphous silicon carbide (a-SiC:H) thin films were prepared by plasma-enhanced chemical-vapor deposition in a gas mixture of $SiH_4$, $CH_4$ and $B_2H_6$. Microstructures and chemical properties of a-SiC:H films grown with varing the volume ratio of $CH_4$ to $SiH_4$ were characterized with various analysis methods including scanning electron microscopy(SEM), X-ray diffractometry(XRD), Raman spectroscopy, Fourier-transform infrared (FTIR) spectroscopy. X-ray photoelectron spectroscopy(XPS), UV absorption spectroscopy and photoconductivity measurements. While Si:H films grown without $CH_4$ showed amorphous state, the addition of $CH_4$ during deposition enhanced the development of a microcrystalline phase. By introducing C atoms into the film, Si-Si and Si--$\textrm{H}_{n}$ bonds of a -Si:H films were gradually replaced by Si-C, C-C, and Si--$\textrm{C}_{n}\textrm{H}_{m}$ bonds. Consequently, the electrical resistivity and optical bandgap of a-SiC:H films were increased with the C concentration in the film.

  • PDF

Comparative study on the physicochemical properties and cytocompatibility of microporous biphasic calcium phosphate ceramics as a bone graft substitute (미세다공성 Biphasic calcium phosphate ceramics의 골이식 대체재로서의 기본특성에 대한 비교연구)

  • Park, Kwang-Bum;Park, Jin-Woo;Ahn, Hyun-Uk;Yang, Dong-Jun;Choi, Seok-Kyu;Jang, II-Sung;Yeo, Shin-Il;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.4
    • /
    • pp.797-808
    • /
    • 2006
  • Objective : The purpose of this study was to evaluate the physicochemical properties and cytocompatibility of microporous, spherical biphasic calcium phosphate(BCP) ceramics with a 60/40 $hydroxyapatite/{\beta}$ -tricalcium phosphate weight ratio for application as a bone graft substitute. Materials and Methods : Microporous, spherical BCP granules(MGSB) were prepared and their basic characteristics were compared with commercially available BCP(MBCP; Biomatlante, France) and deproteinized bovine bone mineral(Bio-Oss; GBistlich-Pharma, Switzerland, BBP; Oscotec. Korea), Their physicochemical properties were evaluated by scanning electron microscopy, X-ray diffractometry, Fourier-transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometer, and Brunauer-Emmett-Teller method. Cell viability and proliferation of MC3T3-El cells on different graft materials were evaluated. Results : MGSB granules showed a chemical composition and crystallinity similar with those in MBCP, they showed surface structure characteristic of three dimensionally, well-interconnected micropores. The results of MTT assay showed increases in cell viablity with increasing incubation times. At 4d of incubation, MGSB, MBCP and BBP showed similar values in optical density, but Bio-Oss exhibited significantly lower optical density compared to other bone substitutes(p <0,05). MGSB showed significantly greater cell number compared to other bone substitutes at 3, 5, and 7d of incubation(p <0,05), which were similar with those in polystyrene culture plates. Conclusion: These results indicated the suitable physicochemical properties of MGSB granules for application as an effective bone graft substitute. which provided compatible environment for osteoblast cell growth. However, further detailed studies are needed to confirm its biological effects on bone formation in vivo.

Effect of Coolants and Metal Bumps on the heat Removal of Liquid Cooled Microchannel System (액랭식 마이크로채널 시스템 내 냉매와 범프의 열 제거 효과에 대한 연구)

  • Won, Yonghyun;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.61-67
    • /
    • 2017
  • As transistor density increases rapidly, a heat flux from IC device rises at fast rate. Thermal issues raised by high heat flux cause IC's performance and reliability problems. To solve these thermal management problems, the conventional cooling methods of IC devices were reached their thermal limit. As a result, alternative cooling methods such as liquid heat pipe, thermoelectric cooler, thermal Si via and etc. are currently emerging. In this paper microchannel liquid cooling system with TSV was investigated. The effects of 2 coolants (DI water and ethylene glycol 70 wt%) and 3 metal bumps (Ag, Cu, Cr/Au/Cu) on cooling performance were studied, and the total heat flux of various coolant and bump cases were compared. Surface temperature of liquid cooling system was measured by infrared microscopy, and liquid flowing through microchannel was observed by fluorescence microscope. In the case of ethylene glycol 70 wt% at $200^{\circ}C$ heating temperature, the total heat flux was $2.42W/cm^2$ and most of total heat flux was from liquid cooling effect.