• Title/Summary/Keyword: Infrared light emitting diode (LED)

Search Result 34, Processing Time 0.027 seconds

LED IT-based System sensor network transceiver module research (LED IT 기반 시스템 센서 네트워크 송수신 모듈 연구)

  • Jang, Tae-Su;Lee, Jun-Myung;Choi, Jung-Won;Kim, Yong-kab
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.11-12
    • /
    • 2012
  • In this paper, efficient visible light communication technology LED (Light Emitting Diode) lighting through the existing infrared sensor used for performance analysis of transmitting and receiving is possible. LED utilizes lighting by changing light into electricity. Lighting features while maintaining the basic principles of flashing LED and PD (Photo Diode) to send and receive communications from LED lighting communication convergence principle be realized simultaneously enabling. Multiple IT applications under the basic structure of LED technology development, and the current was encountered in real life. LED lighting anywhere with wireless communication technology that can, in order to ~ 1m above the initial value by taking advantage of the system H/W and infrared sensors(PD) are widely used in the entire system that can improve the speed of visible light data transmission system is finished. LED module that is used to communicate whether the performance analysis, For forecasting and communication distance on the LED and infrared sensor configuration of the implementation of the research is to study about the possibility of application methods and indicates.

  • PDF

Monitoring of Environmental Arsenic by Cultures of the Photosynthetic Bacterial Sensor Illuminated with a Near-Infrared Light Emitting Diode Array

  • Maeda, Isamu;Sakurai, Hirokazu;Yoshida, Kazuyuki;Siddiki, Mohammad Shohel Rana;Shimizu, Tokuo;Fukami, Motohiro;Ueda, Shunsaku
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1306-1311
    • /
    • 2011
  • Recombinant Rhodopseudomonas palustris, harboring the carotenoid-metabolizing gene crtI (CrtIBS), and whose color changes from greenish yellow to red in response to inorganic As(III), was cultured in transparent microplate wells illuminated with a light emitting diode (LED) array. The cells were seen to grow better under near-infrared light, when compared with cells illuminated with blue or green LEDs. The absorbance ratio of 525 to 425 nm after cultivation for 24 h, which reflects red carotenoid accumulation, increased with an increase in As(III) concentrations. The detection limit of cultures illuminated with near-infrared LED was 5 ${\mu}g$/l, which was equivalent to that of cultures in test tubes illuminated with an incandescent lamp. A near-infrared LED array, in combination with a microplate, enabled the simultaneous handling of multiple cultures, including CrtIBS and a control strain, for normalization by the illumination of those with equal photon flux densities. Thus, the introduction of a near-infrared LED array to the assay is advantageous for the monitoring of arsenic in natural water samples that may contain a number of unknown factors and, therefore, need normalization of the reporter event.

Study of Modulation Effect in Integrated Interface Under Controlling Switching Light-Emitting Diode Lighting Module

  • Hong, Geun-Bin;Jang, Tae-Su;Kim, Yong-Kab
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.253-257
    • /
    • 2011
  • This study was carried out to solve problems such as radio frequency band depletion, confusion risk, and security loss in existing visible wireless communication systems, and to determine the applicability of next-generation networks. A light-emitting diode (LED) light communication system was implemented with a controlling switching light module using the ATmega16 micro-controller. To solve the existing modulation effect and disturbance in visible light communication, an integrated interface was evaluated with a driving light module and analyzes its reception property. A transmitter/receiver using the ATmel's micro-controller, high-intensity white LED-6 modules, and infrared sensor KSM60WLM and visible sensor TSL250RD were designed. An experiment from the initial value of distance to 2.5 m showed 0.46 V of the voltage loss, and if in long distance, external light interference occurred and light intensity was lost by external impact and thus data had to be modified or reset repeatedly. Additionally, when we used 6 modules through the remote controller's lighting dimming, data could be transmitted up to 1.76 m without any errors during the day and up to 2.29 m at night with around 2~3% communication error. If a special optical filter can reduce as much external light as possible in the integrated interface, the LED for lighting communication systems may be applied in next generation networks.

Prototype Implementation of VLC Upstream Transmission Using Focused IR-LED (집광된 IR-LED를 이용한 가시광 통신 상향 전송 프로토타입 구현)

  • Jang, Yunseon;Choi, Kyungmook;Ju, MinChul;Park, Youngil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.9
    • /
    • pp.784-790
    • /
    • 2012
  • In this paper, we propose a upstream transmission method to extend coverage in visible light communication (VLC) systems. We extend transmission distance by using focused infrared(IR) light emitting diodes(LEDs). Since the focused light covers just limited area, it might have a difficulty in transmitting data if the transmitter and receiver are not properly aligned. To solve this problem, we arrange multiple IR-LEDs in different direction and select a single best performing IR-LED among multiple IR-LEDs. Also, the transmission performance is periodically checked and another IR-LED is reselected to support the required quality of service (QoS) and to minimize battery consumption required by a mobile terminal.

Visible Light Communication LED driver For research to improve power (가시통신용 LED 드라이버 전력 효율 성능 향상을 위한 연구)

  • Kwon, Jae-hyun;Park, Keon-jun;Kim, Hyo-jun;Choi, Gil-Sang;Kim, Young-kab
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.15-16
    • /
    • 2012
  • General lighting will be replaced into LED due to the high efficiency, low power consumption, long life than conventional light, moreover, since it is a basically semiconductor device that can convert the electric energy to visible light at a very high speed, using these characteristics can be performed communication modulation via the high-speed ON-OFF switching. Recently, visible light communication (VLC: Visible Light Communication) technology is received attention and there have been many researches. This paper is implemented media signal transmission by combining LED with VLC, a transmitter used the LED light-emitting device and receiver used an infrared sensor. In order to increase the efficiency of the communication system to improve the existing LED visible light communication driver of power conversion efficiency and thermal issues that is applied to the visible light communication in order to improve the speed of transmission media to research a new way of LED driver.

  • PDF

A LED Light Communication Transceiver Module for Ubiquitous Sensor Networks (유비쿼터스 센서 네트워크용 LED 가시광통신 송수신 모듈 및 효율 연구)

  • Jang, Tae-Su;Kwon, Jae-Hyun;Kim, Yong-Kab;Park, Choon-Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1513-1518
    • /
    • 2012
  • This paper is implemented media transmission system of VLC transmitter and receiver module using LED of White lighting that is based on PC module and to transmission technology for performance analysis. To realize LED visible light communication receiver is used 1~12 LED light-emitting device and transmitter is used a variable sensor. Developed initial distance of the tranceiver is more than 0~1m for LED VLC and the overall system transmission speed is achieved on variable having Visible light media transmission system. Composition to PC module with LED module and infrared sensor for performance analysis, predict and analyze the communication distance, check about the possibility of application methods. Measure each performance when the lens wearing and not wearing in order to increase the overall efficiency of the LED module, can know that increase efficiency of approximately 20%.

Conversion of Organic Carbon in Food Processing Wastewater to Photosynthetic Biomass in Photo-bioreactors Using Different Light Sources

  • Suwan, Duangkamon;Chitapornpan, Sukhuma;Honda, Ryo;Chiemchaisri, Wilai;Chiemchaisri, Chart
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.293-298
    • /
    • 2014
  • An anaerobic photosynthetic treatment process utilizing purple non-sulfur photosynthetic bacteria (PNSB) was applied to the recovery of organic carbon from food processing wastewater. PNSB cells, by-product from the treatment, have high nutrition such as proteins and vitamins which are a good alternative for fish feed. Effects of light source on performance of anaerobic photosynthetic process were investigated in this study. Two bench-scale photo-bioreactors were lighted with infrared light emitting diodes (LEDs) and tungsten lamps covered with infrared transmitting filter, respectively, aiming to supply infrared light for photosynthetic bacteria growth. The photo-bioreactors were operated to treat noodle-processing wastewater for 323 days. Hydraulic retention time (HRT) was set as 6 days. Organic removals in the photo-bioreactor lighted with infrared LEDs (91%-95%) was found higher than those in photo-bioreactor with tungsten lamps with filter (79%-83%). Biomass production in a 150 L bench-scale photo-bioreactor was comparable to a 8 L small-scale photo-bioreactor in previous study, due to improvement of light supply efficiency. Application of infrared LEDs could achieve higher treatment performance with advantages in energy efficiency and wavelength specifity.

Design and implementation of optical identification system using visible light and infrared

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.196-203
    • /
    • 2021
  • In this study, an optical identification system was developed, wherein visible light is used to transmit the interrogating signal, and infrared is used to send the response signal. In the reader, visible light from a light emitting diode (LED) array was modulated via modified pulse width modulation for flicker-free illumination and dimming control. Moreover, the duty factor of the dimming control time was employed to control the illumination from the LED. In the transponder, the spike signal in the output of the high-pass filter was utilized to recover the interrogating signal while preventing interference from the 120-Hz noise from adjacent lighting lamps. The illumination was controlled in 26-86% range of the constant wave LED illumination by changing the duty factor from 20% to 90%. This configuration is advantageous for the construction of optical identification systems for automatic security check and car fare calculation at toll gates or parking facilities.

Wound Recovery of Light Irradiation by White LED (백색 LED 조사의 상처 수복 효과)

  • Cheon, Min-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.42-46
    • /
    • 2011
  • Light can be divided into ultraviolet rays, visible rays, and infrared rays depending on the wavelengths. Visible rays with specific wavelength are those predominantly used for would treatment. Especially low level laser irradiates into cells, effectively stimulating cellular tissues and activating cellular function. This study was intended to verify the effect of white LED irradiation therapy on wound recovery in animal tests by applying white LED irradiator, which was independently designed and developed to emit beams of similar wavelength to that of a laser. The designed LED Irradiator was used to find out how white LED light source affected the skin wound of SD-Rat(Sprague-Dawley Rat). We divided the participants into two groups; white LED irradiation group which was irradiated 1 hour a day for 9 consecutive days, and none irradiation group. The results showed that the study group had lower incidence of inflammation and faster recovery, compared with the control group.

Effect of Light Emitting Diode on Growth and Flowering of Oriental Melon (Cucumis melo L. var makuwa Makino)

  • Shin, Y.S.;Lim, Y.S.;Lee, M.J.;Han, Y.Y.;Park, S.D.;Chae, J.H.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.203-205
    • /
    • 2011
  • Investigation on oriental melon was carried out for 30 minutes starting at 7 PM every day from March 21 to May 24 to find out the effect of light emitting diode on seedling quality, grafting, growth and flowering of oriental melon. According to the result of the investigation, plant height was longer in Blue, Infrared, Red+Blue and Red treatment and leaf number was higher in Blue, Red+Blue and Infrared treatment than those of control. No big difference was identified between control and Yellow, Green, Ultraviolet treatments. Grafting rate was high in Green, Red+Blue and Green treatment. The number of flower every week in control was nine, the number was almost 1 higher in White and Ultraviolet A treatments, but it was 1 to 4 lower in the rest of treatments. The number of female flowers of control was 10, however, it was 21 in Infrared treatment, 17 in White, 15 in Ultraviolet, 13 in Red+lnfrared, 12 in Blue and Red+Blue, 11 in Yellow and 8 in Green.