• Title/Summary/Keyword: Infrared emissivity

Search Result 122, Processing Time 0.026 seconds

Characteristics of Thermal Radiation Pastes Containing Graphite and Carbon Nanotube (흑연 및 탄소나노튜브 혼합 방열도료의 특성)

  • Lee, Ji Hun;Song, Man-Ho;Kang, Chan Hyoung
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.2
    • /
    • pp.218-224
    • /
    • 2016
  • Thermal radiation pastes were prepared by dispersing carbon materials as fillers with a content of 1 weight percent in an acrylic resin. The kind of fillers was as follows; $25{\mu}m$ graphite, $45{\mu}m$ graphite, $15{\mu}m$ carbon nanotube(CNT), a 1:1 mixture of $25{\mu}m$ graphite and $15{\mu}m$ CNT, and a 1:1 mixture of $45{\mu}m$ graphite and $15{\mu}m$ CNT. Thermal emissivity was measured as 0.890 for the samples with graphite only, 0.893 for that with CNT only, and 0.892 for those containing both. After coating prepared pastes on a side of 0.4 mm thick aluminium plate and placing the plate over an opening of a box maintained at $92^{\circ}C$ with the coated side out, the temperatures on the uncoated side of the plates were measured. The samples containing graphite and CNT showed the lowest temperatures. The paste with mixed fillers was coated on the back side of the PCB of an LED module and thermal analysis was carried out using Thermal Transient Tester (T3ster) in a still air box. The thermal resistance of the module with coated PCB was measured as 14.34 K/W whereas that with uncoated PCB was 15.02 K/W. The structure function analysis of T3ster data revealed that the difference between junction and ambient temperatures was $13.8^{\circ}C$ for the coated case and $18.0^{\circ}C$ for the uncoated. From the infrared images of heated LED modules, the hottest-spot temperature of the module with coated PCB was lower than that of the uncoated one for a given period of LED operation.

Comparison of Surface Temperatures between Thermal Infrared Image and Landsat 8 Satellite (열적외 영상과 Landsat 8 위성으로부터 관측된 지표면 온도 비교)

  • Cho, Chaeyoon;Jee, Joon-Bum;Park, Moon-Soo;Park, Sung-Hwa;Choi, Young-Jean
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.46-56
    • /
    • 2016
  • In order to analyze the surface temperature in accordance with the surface material, surface temperatures between Thermal InfraRed Image (TIRI) and Landsat 8 satellite observed at the commercial area (Gwanghwamun) and residential area (Jungnang) are compared. The surface temperature from TIRI had applied atmospheric correction and compared with that from Landsat 8. The surface temperatures from Landsat 8 at Gwanghwamun and Jungnang are underestimated in comparison with that from TIRI. The difference of surface temperature between the two methods is greater in summer than in winter. When the analysis area was divided into detailed regions, depending on the material and the position of the surface, correlation of surface temperature between TIRI with Landsat 8 is as low as 0.29 (Gwanghwamun) and 0.18 (Jungnang), respectively. The results were caused from the resolution difference between the two methods. While the surface temperatures of each zone from Landsat 8 were observed almost constant, high-resolution TIRI observed relatively precise surface temperatures. When the each area was averaged as one space, correlation of surface temperature between TIRIs and Landsat 8 is more than 0.95. The spatially averaged surface temperature is higher at Jungnang, representing residential areas, than at Gwanghwamun, representing commercial areas. As a result, the observation of high resolution is required in order to observe the precise surface temperature. This is because it appears that the spatial distribution of the various surface temperature in the range of micro-scale according to the conditions of the ground surface.

The Infrared Medium-deep Survey. VI. Discovery of Faint Quasars at z ~ 5 with a Medium-band-based Approach

  • Kim, Yongjung;Im, Myungshin;Jeon, Yiseul;Kim, Minjin;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.37.1-37.1
    • /
    • 2019
  • The faint quasars with M1450 > -24 mag are known to hold the key to the determination of the ultraviolet emissivity for the cosmic reionization. But only a few have been identified so far because of the limitations on the survey data. Here we present the first results of the z ~ 5 faint quasar survey with the Infrared Medium-deep Survey (IMS), which covers ${\sim}100deg^2$ areas in J band to the depths of $J_{AB}$ ~ 23 mag. To improve selection methods, the medium-band follow-up imaging has been carried out using the SED camera for QUasars in Early uNiverse (SQUEAN) on the Otto Struve 2.1 m Telescope. The optical spectra of the candidates were obtained with 8 m class telescopes. We newly discovered 10 quasars with -25 < $M_{1450}$ < -23 at z ~ 5, among which three have been missed in a previous survey using the same optical data over the same area, implying the necessity for improvements in high-redshift faint quasar selection. We derived photometric redshifts from the medium-band data and found that they have high accuracies of ${\langle}{\mid}{\Delta}z{\mid}/(1+z){\rangle}=0.016$. The medium-band-based approach allows us to rule out many of the interlopers that contaminate ${\geq}20%$ of the broadband-selected quasar candidates. These results suggest that the medium-band-based approach is a powerful way to identify z ~ 5 quasars and measure their redshifts at high accuracy (1%-2%). It is also a cost-effective way to understand the contribution of quasars to the cosmic reionization history.

  • PDF

Thermal imaging and computer vision technologies for the enhancement of pig husbandry: a review

  • Md Nasim Reza;Md Razob Ali;Samsuzzaman;Md Shaha Nur Kabir;Md Rejaul Karim;Shahriar Ahmed;Hyunjin Kyoung;Gookhwan Kim;Sun-Ok Chung
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.31-56
    • /
    • 2024
  • Pig farming, a vital industry, necessitates proactive measures for early disease detection and crush symptom monitoring to ensure optimum pig health and safety. This review explores advanced thermal sensing technologies and computer vision-based thermal imaging techniques employed for pig disease and piglet crush symptom monitoring on pig farms. Infrared thermography (IRT) is a non-invasive and efficient technology for measuring pig body temperature, providing advantages such as non-destructive, long-distance, and high-sensitivity measurements. Unlike traditional methods, IRT offers a quick and labor-saving approach to acquiring physiological data impacted by environmental temperature, crucial for understanding pig body physiology and metabolism. IRT aids in early disease detection, respiratory health monitoring, and evaluating vaccination effectiveness. Challenges include body surface emissivity variations affecting measurement accuracy. Thermal imaging and deep learning algorithms are used for pig behavior recognition, with the dorsal plane effective for stress detection. Remote health monitoring through thermal imaging, deep learning, and wearable devices facilitates non-invasive assessment of pig health, minimizing medication use. Integration of advanced sensors, thermal imaging, and deep learning shows potential for disease detection and improvement in pig farming, but challenges and ethical considerations must be addressed for successful implementation. This review summarizes the state-of-the-art technologies used in the pig farming industry, including computer vision algorithms such as object detection, image segmentation, and deep learning techniques. It also discusses the benefits and limitations of IRT technology, providing an overview of the current research field. This study provides valuable insights for researchers and farmers regarding IRT application in pig production, highlighting notable approaches and the latest research findings in this field.

The photo-removal Characteristic of NOx by photocatalyst/scoria/loess concrete (광촉매가 첨가된 스코리아/황토 콘크리트의 NOx 제거 특성)

  • Ko, Seong-Hyun;Lee, Jae-Hoon;Hong, Chong-Hyun;Ryu, Soong-Phil;Kim, Moon-Hoon;Moon, Kyung-Jong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.593-596
    • /
    • 2006
  • The environment-friendly building material, photocatalyst/scoria/loess concrete, was prepared using scoria and loess (which have merits as building materials) and photocatalyst (which has the functions to compose the environmental contaminants and of self cleaning). In order to apply this material as a building material, the compressive and flexible strengths, and water absorptivity (which have been set by Korea Industrial Standard) were measured. In order to know the environment-friendly characteristics of this material, several tests, such as, the tests of emissivity and emission power of far infrared ray and acoustic absorptivity, antibacterial test for Escherichia coli and Pseudomonas aeruginosa, antifungal test for mixed fungal strains, and deodorization test of ammonia were carried out. Moreover, the removal characteristics of NOx, and formaldehyde (HCHO) by photocatalyst/scoria/loess concrete were examined as the following different parameters: the removal characteristics of these contaminants with the substitution ratio and the kind of photocatalyst, light source, UV intensity of sunlight, relative humidity, intial NOx concentration.

  • PDF

Design and Construction of a High Temperature Creep Tester for Thin Film Specimens (박막시험편용 고온 크리프 시험기의 설계 및 제작)

  • Ko, Gyoung-Dek;Lee, Sang-Shin;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.253-259
    • /
    • 2007
  • A new material tester has been developed to measure mechanical properties of thin film specimens at high temperature. It is useful for observing oxide film growth or local deformation on the surface, and for measuring creep strength. Main characteristics of the tester is as follows; First, high temperature is achieved by Joule heating generated by electricity passing through the specimen, which does not need to enclose the specimen by a furnace or a heating chamber. The exposed specimen enables one to observe the surface during the test. Because the overall size of the test rig is compact, the whole test rig can be placed in a chamber for environmental controlled tests. The loading device is from a level scales. Not only static load with fixed counter weight, but also variable load by moving counter weight controlled remotely can be applied for an ordinary creep test and creep-fatigue test, respectively. The detail of the construction, operation principle, and the specification are described. And also, an example of test result obtained using the creep tester is presented.

Study on Improvement of Heat Dissipation Characteristics of TIM Material Using Radiant Energy (복사에너지를 이용한 TIM소재의 방열 특성 향상을 위한 연구)

  • Hwang, Myungwon;Kim, Dohyung;Jung, Uoo-Chang;Chung, Wonsub
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.2
    • /
    • pp.58-61
    • /
    • 2019
  • The aim of this study is to quantitatively demonstrate the possibility of heat transfer by thermal radiation by comparing heat transfer by conventional heat transfer and radiation by radiation. 1) The heat transfer was measured by using filler of TIM material with low thermal conductivity (CuS). As a result, heat transfer was easier than ceramic with high thermal conductivity ($Al_2O_3$ and $Si_3N_4$). 2) The reason for this is thought to be that the infrared wave due to radiation of the air diaphragm has moved easily. 3) From the above results, the heat dissipation of the TIM material indicates the possibility of heat transfer by thermal radiation.

AKARI FAR-INFRARED ALL-SKY SURVEY MAPS

  • Doi, Yasuo;Komugi, Shinya;Kawada, Mitsunobu;Takita, Satoshi;Arimatsu, Ko;Ikeda, Norio;Kato, Daisuke;Kitamura, Yoshimi;Nakagawa, Takao;Ootsubo, Takafumi;Morishima, Takahiro;Hattori, Makoto;Tanaka, Masahiro;White, Glenn J.;Etxaluze, Mireya;Shibai, Hiroshi
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.111-116
    • /
    • 2012
  • Far-infrared observations provide crucial data for the investigation and characterisation of the properties of dusty material in the Interstellar Medium (ISM), since most of its energy is emitted between ~ 100 and $200{\mu}m$. We present the first all-sky image from a sensitive all-sky survey using the Japanese AKARI satellite, in the wavelength range $50-180{\mu}m$. Covering > 99% of the sky in four photometric bands with four filters centred at $65{\mu}m$, $90{\mu}m$, $140{\mu}m$, and $160{\mu}m$ wavelengths, this achieved spatial resolutions from 1 to 2 arcmin and a detection limit of < 10 MJy $sr^{-1}$, with absolute and relative photometric accuracies of < 20%. All-sky images of the Galactic dust continuum emission enable astronomers to map the large-scale distribution of the diffuse ISM cirrus, to study its thermal dust temperature, emissivity and column density, and to measure the interaction of the Galactic radiation field and embedded objects with the surrounding ISM. In addition to the point source population of stars, protostars, star-forming regions, and galaxies, the high Galactic latitude sky is shown to be covered with a diffuse filamentary-web of dusty emission that traces the potential sites of high latitude star formation. We show that the temperature of dust particles in thermal equilibrium with the ambient interstellar radiation field can be estimated by using $90{\mu}m$, $140{\mu}m$, and $160{\mu}m$ data. The FIR AKARI full-sky maps provide a rich new data set within which astronomers can investigate the distribution of interstellar matter throughout our Galaxy, and beyond.

A Study of Effect on Skin Temperature by Jadeite Powder Containing O/W Emulsion Formulation (원적외선 방사체인 경옥 파우더를 함유하는 스킨케어 화장품 제형이 피부 온도 변화에 미치는 영향에 대한 연구)

  • Kim, Na Ri;Shim, Jongwon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.2
    • /
    • pp.201-210
    • /
    • 2018
  • In this study, we formulated oil-in-water emulsion composition for skin care products containing jadeite powder which is well known as far-infrared radiating material. Jadeite powder could sustain stable dispersion in aqueous solvents over a month and this helped mixing it high content in oil-in-water emulsion formulation. To identify the effect of jadeite as a far-infrared radiator materials relating to the skin surface temperature change, we applied emulsion formulation containing 2 weight percent jadeite powder onto facial skin surface and blank formulation together and analyzed surface temperature with thermo-vision. Our results showed that the temperature difference between jadeite powder formulation applied region and blank formulation reached to 1.5 ~ 2.0 degree Celsius. We also performed same test with nephrite powder and titanium dioxide powder but only jadeite powder containing formulation showed significant skin temperature change. To elucidate main cause of heat energy transfer, we tested heat radiation, energy dispersive spectrometer analysis and measured far infrared radiance emissivity, diffuse reflectance spectra and water evaporation rate. We found out jadeite powder could retard water evaporation effectively from the skin surface and resist temperature drop down. This is because of the innate chemical composition and surface structure of jadeite, which can bind with water molecules to form hydrogen bonds. It is concluded that we can develop novel skin care products for moisturizing and thermos with jadeite powder.

A Basic Study for the Retrieval of Surface Temperature from Single Channel Middle-infrared Images (단일 밴드 중적외선 영상으로부터 표면온도 추정을 위한 기초연구)

  • Park, Wook;Lee, Yoon-Kyung;Won, Joong-Sun;Lee, Seung-Geun;Kim, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.189-194
    • /
    • 2008
  • Middle-infrared (MIR) spectral region between 3.0 and $5.0\;{\mu}m$ in wavelength is useful for observing high temperature events such as volcanic activities and forest fire. However, atmospheric effects and sun irradiance in day time has not been well studied for this MIR spectral band. The objectives of this basic study is to evaluate atmospheric effects and eventually to estimate surface temperature from a single channel MIR image, although a typical approach utilize split-window method using more than two channels. Several parameters are involved for the correction including various atmospheric data and sun-irradiance at the area of interest. To evaluate the effect of sun irradiance, MODIS MIR images acquired in day and night times were used for comparison. Atmospheric parameters were modeled by MODTRAN, and applied to a radiative transfer model for estimating the sea surface temperature. MODIS Sea Surface Temperature algorithm based upon multi-channel observation was performed in comparison with results from the radiative transfer model from a single channel. Temperature difference of the two methods was $0.89{\pm}0.54^{\circ}C$ and $1.25{\pm}0.41^{\circ}C$ from the day-time and night-time images, respectively. It is also shown that the emissivity effect has by more largely influenced on the estimated temperature than atmospheric effects. Although the test results encourage using a single channel MR observation, it must be noted that the results were obtained from water body not from land surface. Because emissivity greatly varies on land, it is very difficult to retrieval land surface temperature from a single channel MIR data.