• 제목/요약/키워드: Infrared distance sensor

검색결과 81건 처리시간 0.193초

셔터방식의 쵸퍼를 이용한 정지 및 이동인체 감지 모듈 개발 (Development of Standing and Moving Human Body Sensing Module Using a Chopper of Shutter Method)

  • 차형우;이원호
    • 전자공학회논문지
    • /
    • 제53권2호
    • /
    • pp.109-116
    • /
    • 2016
  • 셔터방식의 쵸퍼를 이용한 정지 및 이동인체 감지 모듈을 개발하였다. 감지 모듈은 프레넬 렌즈(Fresnel lens), 초전형적외선(pyroelectric infrared : PIR) 센서, 센서 인터페이스 회로, MCU(micro control unit) 그리고 경보 LED(light emitting diode)로 구성된다. 정지 인체 감지 원리는 PIR 센서에서 나오는 신호를 카메라 셔터를 이용하여 인체의 열을 쵸핑하여 감지하는 방식이다. MCU에서 인터럽트 함수를 제어하는 알고리즘을 통해 정지 및 이동 인체 신호를 감지하게 하였다. 개발한 감지 모듈은 기구부와 PCB(print circuit board)를 일체화함으로써 종래의 상용화되고 있는 이동인체 감지 모듈을 대체 가능하다. 실내 상온에서의 실험 결과, 감지거리는 약 7.0m, 감지각도는 $110^{\circ}$로 측정되었다. 이런 조건에서 감지률은 100%이였고 모듈의 소비 전력는 100mW이였다.

Automatic Detection of Malfunctioning Photovoltaic Modules Using Unmanned Aerial Vehicle Thermal Infrared Images

  • Kim, Dusik;Youn, Junhee;Kim, Changyoon
    • 한국측량학회지
    • /
    • 제34권6호
    • /
    • pp.619-627
    • /
    • 2016
  • Cells of a PV (photovoltaic) module can suffer defects due to various causes resulting in a loss of power output. As a malfunctioning cell has a higher temperature than adjacent normal cells, it can be easily detected with a thermal infrared sensor. A conventional method of PV cell inspection is to use a hand-held infrared sensor for visual inspection. The main disadvantages of this method, when applied to a large-scale PV power plant, are that it is time-consuming and costly. This paper presents an algorithm for automatically detecting defective PV panels using images captured with a thermal imaging camera from an UAV (unmanned aerial vehicle). The proposed algorithm uses statistical analysis of thermal intensity (surface temperature) characteristics of each PV module to verify the mean intensity and standard deviation of each panel as parameters for fault diagnosis. One of the characteristics of thermal infrared imaging is that the larger the distance between sensor and target, the lower the measured temperature of the object. Consequently, a global detection rule using the mean intensity of all panels in the fault detection algorithm is not applicable. Therefore, a local detection rule was applied to automatically detect defective panels using the mean intensity and standard deviation range of each panel by array. The performance of the proposed algorithm was tested on three sample images; this verified a detection accuracy of defective panels of 97% or higher. In addition, as the proposed algorithm can adjust the range of threshold values for judging malfunction at the array level, the local detection rule is considered better suited for highly sensitive fault detection compared to a global detection rule. In this study, we used a panel area extraction method that we previously developed; fault detection accuracy would be improved if panel area extraction from images was more precise. Furthermore, the proposed algorithm contributes to the development of a maintenance and repair system for large-scale PV power plants, in combination with a geo-referencing algorithm for accurate determination of panel locations using sensor-based orientation parameters and photogrammetry from ground control points.

시각 장애인을 위한 스마트 지팡이에 관한 연구 (A Research on Smart Stick for the Blind)

  • 아메드 엘-코카;강대기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.1174-1176
    • /
    • 2011
  • Unfortunately, the number of blind people increases every 5 seconds in our world. An extensive research was made on improving the conventional walking cane and developing a microcontroller based walking stick for the blind with sensors and a feedback in form of vibration. Two different kinds of sensors are used to detect obstacles, ultrasonic and infrared distance sensors. The signal from an ultrasonic sensor is fed to a microcontroller. With the help of the supporting software, the Pulse Width Modulation (PWM) principle is extensively used to form three zones and run the corresponding vibration motor at different spends according to how far the detected object is located. The other infrared distance sensors are connected to amplifiers and after that to their corresponding vibration motors through motor drivers. The vibration motors are to be located around the user's arm to notify the blind of the obstacles in the intended walking way. It can be very reliable and sufficient device guiding the blind other than the conventional walking cane which has many drawbacks which will be explained and discussed.

A Study on Depth Information Acquisition Improved by Gradual Pixel Bundling Method at TOF Image Sensor

  • Kwon, Soon Chul;Chae, Ho Byung;Lee, Sung Jin;Son, Kwang Chul;Lee, Seung Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제7권1호
    • /
    • pp.15-19
    • /
    • 2015
  • The depth information of an image is used in a variety of applications including 2D/3D conversion, multi-view extraction, modeling, depth keying, etc. There are various methods to acquire depth information, such as the method to use a stereo camera, the method to use the depth camera of flight time (TOF) method, the method to use 3D modeling software, the method to use 3D scanner and the method to use a structured light just like Microsoft's Kinect. In particular, the depth camera of TOF method measures the distance using infrared light, whereas TOF sensor depends on the sensitivity of optical light of an image sensor (CCD/CMOS). Thus, it is mandatory for the existing image sensors to get an infrared light image by bundling several pixels; these requirements generate a phenomenon to reduce the resolution of an image. This thesis proposed a measure to acquire a high-resolution image through gradual area movement while acquiring a low-resolution image through pixel bundling method. From this measure, one can obtain an effect of acquiring image information in which illumination intensity (lux) and resolution were improved without increasing the performance of an image sensor since the image resolution is not improved as resolving a low-illumination intensity (lux) in accordance with the gradual pixel bundling algorithm.

Design and Fabrication of Miniaturized Optical Chopper Operated by Electromagnetic Actuation

  • Kim, Ho Won;Min, Seong Ki;Choi, Young Chan;Kong, Seong Ho
    • 센서학회지
    • /
    • 제23권3호
    • /
    • pp.165-169
    • /
    • 2014
  • An existing infrared (IR) analysis system is generally composed of infrared source, IR focusing lenses, IR detector, and optical chopper. An optical chopper is widely used in combination with lock-in amplifier to improve the signal-to-noise ratio by periodically interrupting incident light beam. During recent years, a few researches on miniaturized optical chopper have been reported to apply to micro-scaled optical systems. In this paper, a micro optical chopper operated by electromagnetic actuation is proposed and applied to a miniaturized micro-scaled optical system operating in IR spectral range. Additionally, the fabrication method of the proposed micro chopper is demonstrated. The proposed micro optical chopper is composed of the polydimethylsiloxane (PDMS) membrane, solenoid, and permanent magnet. The permanent magnet is bonded on the PDMS membrane using an ultraviolet-activated adhesive. The operation of the chopper is based on the attractive and repulsive forces between permanent magnet and solenoid induced by an electrical current flowing through the solenoid. The fabricated micro optical chopper could operate up to 200 Hz of frequency. The maximum operating distance of the chopper with 7mm diameter membrane was $750{\mu}m$ at 100 Hz of frequency.

밝기 차, 유사성, 근접성을 이용한 적응적 표적 검출 알고리즘 (Adaptive Target Detection Algorithm Using Gray Difference, Similarity and Adjacency)

  • 이은영;구은혜;유현정;박길흠
    • 한국통신학회논문지
    • /
    • 제38B권9호
    • /
    • pp.736-743
    • /
    • 2013
  • 적외선 탐색 및 추적 시스템에서 원거리에 표적이 존재할 경우 표적의 크기가 매우 작고, 해무와 같은 클러터와 다양한 센서 잡음으로 인해 표적의 검출이 매우 어렵다. 특히 표적의 화소 값과 유사한 잡음이나 클러터가 존재하는 경우 일반적인 임계화 기법을 적용하는 경우 표적의 오검출 위험이 매우 높다. 이러한 이유로 본 논문에서는 영상의 밝기 정보와 표적에 대한 사전 정보를 이용하여 최적의 표적 검출 결과를 도출하기 위한 적응적 임계화 기법을 제안한다. 소형 표적을 강조하기 위하여 인간 시각 시스템을 반영한 CSF(Contrast Sensitivity Function)를 적용하고, 표적이 강조된 영상에서 영상의 밝기 정보와 거리 정보를 이용하여 표적을 검출한다. 다양한 환경 조건에서 획득된 적외선 영상에 대한 실험 결과들은 제안 알고리즘의 견실한 성능을 보여준다.

삼각측량법 기반의 정지 표적 정밀 크기 추정기법 연구 (A Study on the Static Target Accurate Size Estimation Algorithm with Triangulation)

  • 정윤식;김진환
    • 제어로봇시스템학회논문지
    • /
    • 제21권10호
    • /
    • pp.917-923
    • /
    • 2015
  • In this paper, the TSE (Triangulation based target Size Estimator) algorithm is presented to estimate static target size at IIR (Imaging Infrared) environment. The size information is important factor for accurate IIR target tracking. But the IIR sensor can't generate distance between missile and target to calculate target size. In order to overcome the problem, we propose TSE algorithm which based on triangulation measurement. The performance of proposed method is tested at target intercept scenario. The experiment results show that the proposed algorithm has suitable performance for the accurate static target size estimating.

은 나노입자 프린팅 기반의 재활치료용 신축성 관절센서 개발 (Development of Stretchable Joint Motion Sensor for Rehabilitation based on Silver Nanoparticle Direct Printing)

  • Chae, Woen-Sik;Jung, Jae-Hu
    • 한국운동역학회지
    • /
    • 제31권3호
    • /
    • pp.183-188
    • /
    • 2021
  • Objective: The purpose of this study was to develop a stretchable joint motion sensor that is based on silver nano-particle. Through this sensor, it can be utilized as an equipment for rehabilitation and analyze joint movement. Method: In this study, precursor solution was created, after that, nozel printer (Musashi, Image master 350PC) was used to print on a circuit board. Sourcemeter (Keithley, Keithley-2450) was used in order to evaluate changes of electric resistance as the sensor stretches. In addition, the sensor was attached on center of a knee joint to 2 male adults, and performed knee flexion-extension in order to evaluate accurate analysis; 3 infrared cameras (100 Hz, Motion Master 100, Visol Inc., Korea) were also used to analyze three dimensional movement. Descriptive statistics were suggested for comparing each accuracy of measurement variables of joint motions with the sensor and 3D motions. Results: The change of electric resistance of the sensor indicated multiple of 30 times from initial value in 50% of elongation and the value of electric resistance were distinctively classified by following 10%, 20%, 30%, 40% of elongation respectively. Through using the sensor and 3D camera to analyze movement variable, it showed a resistance of 99% in a knee joint extension, whereas, it indicated about 80% in flexion phase. Conclusion: In this research, the stretchable joint motion sensor was created based on silver nanoparticle that has high conductivity. If the sensor stretches, the distance between nanoparticles recede which lead gradual disconnection of an electric circuit and to have increment of electric resistance. Through evaluating angle of knee joints with observation of sensor's electric resistance, it showed similar a result and propensity from 3D motion analysis. However, unstable electric resistance of the stretchable sensor was observed when it stretches to maximum length, or went through numerous joint movements. Therefore, the sensor need complement that requires stability when it comes to measuring motions in any condition.

유비쿼터스 센서 네트워크용 LED 가시광통신 송수신 모듈 및 효율 연구 (A LED Light Communication Transceiver Module for Ubiquitous Sensor Networks)

  • 장태수;권재현;김용갑;박춘배
    • 한국전자통신학회논문지
    • /
    • 제7권6호
    • /
    • pp.1513-1518
    • /
    • 2012
  • 본 논문에서는 PC모듈 기반으로 LED(Light Emitting Diode)의 White조명을 이용한 VLC(Visible Light Communication) 송 수신기 모듈의 미디어 전송 시스템을 구현하고 전송 기술에 대해 성능 분석을 하기 위한 연구이다. LED가시광통신을 실현시키고자 송신부에는 1~12개의 LED발광소자와 수신부에는 가변 센서를 사용 하고자 한다. LED가시광통신을 하고자 개발이 이루어진 송 수신부의 초기 거리 값은 0~1m이상으로 하고 전체 시스템 전송 속도는 수천 kbps를 가지는 가시광 미디어 전송 시스템을 이루었다. 성능 분석을 위해서, PC 모듈에 LED 및 적외선센서를 구성하여 예측 및 통신 거리에 분석하여 응용 방법과 가능성에 대해서 확인하고자 한다. LED 모듈의 전체적인 효율 증가를 위하여 렌즈 착용시와 미착용시 각 성능을 측정하여 약 20%의 효율이 증가하였음을 알 수 있었다.

원거리의 물과 오일을 구별할 수 있는 UV형광측정시스템 개발과 분석에 대한 연구 (Long Distance Identification of Water and Oil using an Ultraviolet Fluorescence Measurement System)

  • 백경훈;이준석;전수정;박보람;박성욱
    • 센서학회지
    • /
    • 제31권4호
    • /
    • pp.266-270
    • /
    • 2022
  • Owing to the rising volume of seaborne trade, oil spills damage the marine environment for over 250 yearly. Thus, various analysis methods such as the Fourier-transform infrared (FTIR), Raman spectroscope, and gas chromatography are used to monitor oil spills at sea, but these methods are expensive. Recently, to reduce operational costs, an underwater fluorometer was adopted. However, this approach is not ideal for the remote sensing of oil spills because the device gets submerged in the sea. In this study, we have designed and developed a monitoring system that uses ultraviolet fluorescence to detect spilled oil or water from a distance, as well as proposed an analyzing method defining based on water Raman signal and QF535. Each fluorescence spectrum of water, oil (crude oil), and Bunker A was obtained using the system, and was calculated and analyzed from the spectrum individually. Based on the results of the analysis, we could successfully identity water and oil at a long distance.