• Title/Summary/Keyword: Infrared curing

Search Result 64, Processing Time 0.036 seconds

Effects of Reinforcing Fillers on Far-infrared Vulcanization Characteristics of EPDM (보강제에 따른 EPDM의 원적외선 가교 특성 연구)

  • Kim, J.S.;Lee, J.H.;Jung, W.S.;Bae, J.W.;Park, H.C.;Kang, D.P.
    • Elastomers and Composites
    • /
    • v.44 no.1
    • /
    • pp.47-54
    • /
    • 2009
  • EPDM(Ethylene-propylene-diene-terpolymer) compound reinforced with carbon black having four different particle size, acetylene black(thermal conductivity carbon black), and silica were manufactured by internal mix and open mill. To investigate the effect of particle size of filler and filler type on far-infrared vulcanization, intermal temperature of compound, degree of curing, infrared spectroscopy, and thermal analysis were measured. The thermal conductivity of far-infrared vulcanized EPDM compound increased with increasing particle size of carbon filler, but hot air vulcanized EPDM compound is not affected by particle size. The thermal conductivity was increased in the order of carbon black < silica < acetylene black(thermal conductivity carbon black).

Study on the MTTF of Multi Wave Lengths IR and NIR LEDs Module (다파장 IR과 NIR 모듈의 평균 수명 예측에 관한 연구)

  • Kim, Dong Pyo;Kim, Kyung Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.44-49
    • /
    • 2021
  • Recently, infrared (IR) and near-infrared (NIR) light-emitting diodes (LEDs) were widely used for home medical applications owing to its low output power and wide exposed area for curing. For deep penetration of the light under the skin, multiple LEDs with wavelengths of 700~10,000 nm were located on a flexible printed circuit board. When multiple wavelengths of LEDs were soldered on a circuit board, the lifetime of LED module highly depends on LEDs with a short lifetime. The mean time to failure (MTTF) was able to calculate with the experimental results under high temperature and the Arrhenius model. The results of this study could help companies to approve the warranty of LED modules and its product.

A Study of Infrared Emitter with High Efficiency for Curing Car Paints (자동차 도료 경화용 고효율 적외선 방사체에 관한 연구)

  • Gang, Byeong-Cheol;Choe, Jeong-Jin;Hwang, Seon;Kim, Gi-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.114-114
    • /
    • 2008
  • 자동차 보수도료 경화는 주로 열풍방식을 사용하고 있지만 적외선 가열방식을 사용하면 품질이 향상 되고 에너지 절약 등의 이점이 있다. 따라서 자동차 보수도료의 경화용으로 사용할 적외선 방사체를 개발하였다. 자동차 보수도료의 적외선 흡수 스펙트럼과 적외선 방사체 방사 스펙트럼이 일치해야 도료의 경화효율이 우수해짐을 알 수 있었고 열풍방식과 비교하여 경화된 도막의 품질 및 경화시간에 대한 실험데이터를 분석하였다.

  • PDF

Individual Reaction Mechanisms and Properties of a DGEBA/DDS Epoxy Resin System (DGEBA/DDS 에폭시수지계의 개별적 반응기구 및 물성)

  • Byung-Gak Min
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.73-76
    • /
    • 1999
  • Near infrared spectroscopy techniques were used to study the cure reactions of epoxy resin system based on diglycidyl ether of bisphenol A(DGEBA) resins cured with 4, 4' diaminodiphenyl sulfone (DDS) hardner. Stoichiometric DGEBA/DDS resin formulation was involved in this study. The infrared absorption spectra of the prepared formulation were obtained on an FTIR spectrometer operating in the region of 11000 to 4000$cm^{-l}$. The chemical group peaks of interest in a DFEBA/DDS spectrum were identified by a comparative study with individual spectra of DGEBA and DDS monomers. Where necessary, special model compounds were used to identify unknown bands, such as the primary amine band at 4535$cm^{-l}$. The absorption bands of interest were integrated to quantify the areas and then converted to molar concentrations. This series of quantitative analyses of the major chemical groups led us to understand not only the reaction mechanism but also the cure kinetics. In this paper, the reaction mechanisms observed in stoichiometric DGEBA/DDS resin formulation and the various properties of the resin system as a function of cure temperature are described.

  • PDF

Temperature changes under demineralized dentin during polymerization of three resin-based restorative materials using QTH and LED units

  • Mousavinasab, Sayed-Mostafa;Khoroushi, Maryam;Moharreri, Mohammadreza;Atai, Mohammad
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.3
    • /
    • pp.155-163
    • /
    • 2014
  • Objectives: Light-curing of resin-based materials (RBMs) increases the pulp chamber temperature, with detrimental effects on the vital pulp. This in vitro study compared the temperature rise under demineralized human tooth dentin during light-curing and the degrees of conversion (DCs) of three different RBMs using quartz tungsten halogen (QTH) and light-emitting diode (LED) units (LCUs). Materials and Methods: Demineralized and non-demineralized dentin disks were prepared from 120 extracted human mandibular molars. The temperature rise under the dentin disks (n = 12) during the light-curing of three RBMs, i.e. an Ormocer-based composite resin (Ceram. X, Dentsply DeTrey), a low-shrinkage silorane-based composite (Filtek P90, 3M ESPE), and a giomer (Beautifil II, Shofu GmbH), was measured with a K-type thermocouple wire. The DCs of the materials were investigated using Fourier transform infrared spectroscopy. Results: The temperature rise under the demineralized dentin disks was higher than that under the non-demineralized dentin disks during the polymerization of all restorative materials (p < 0.05). Filtek P90 induced higher temperature rise during polymerization than Ceram.X and Beautifil II under demineralized dentin (p < 0.05). The temperature rise under demineralized dentin during Filtek P90 polymerization exceeded the threshold value ($5.5^{\circ}C$), with no significant differences between the DCs of the test materials (p > 0.05). Conclusions: Although there were no significant differences in the DCs, the temperature rise under demineralized dentin disks for the silorane-based composite was higher than that for dimethacrylate-based restorative materials, particularly with QTH LCU.

CORRELATION BETWEEN BIS-GMA : TEGDMA RATIO AND DEGREE OF CONVERSION IN VARIOUS LAYERS OF COMPOSITE AFTER ADDITIONAL HEAT CURING (수종 복합레진 내의 bis-GMA와 TEGDMA의 구성비가 레진 인레이 법에 의한 부가적 열처리시 복합레진의 표면 및 내부의 중합률 변화에 미치는 영향)

  • Park, Seong-Ho;Chung, Chan-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.2
    • /
    • pp.642-651
    • /
    • 1996
  • The purpose of this study was to evaluate the relationship between monomer compositions and the changes in the degree of conversion in the various layers of composites after additional heat curing. Four types of composites and 3 types of inlay ovens were used in this study. Composite was placed in a 4-mm thick teflon mold, and light cured from the top for 60 seconds. Ten samples were prepared for each composite ; 5 of these were additionally heat cured in an inlay oven as the manufacturer recommended. After light curing or light and heat curing, the samples were sectioned into four parts and assigned to groups A, B, C, or D according to their distance from the light source. These sections were then thinned to 50-$70{\mu}m$, and these wafers were analyzed with a Fourier Transform Infrared Spectrometer(FI-IR) to determine the degree of conversion. A standard baseline technique was used to calculate the degree of conversion. $^{13}C$ NMR spectra of bis-GMA, TEGDMA and bis-EMA, were acquired using a Varian Gemini spectrometer operated at 200 MHz. $CDCl_3$ solvent was used for qualitative analysis. The degree of conversion was affected by bis-GMA : TEGDMA ratio but it seemed to be also affected by other factors. When the composites were heat cured, significant increases in the degree of conversion were noted throughout the samples, but the amount of increase differed between materials. Thus, clinical performance of a heat-treated composite inlay may be different depending on materials.

  • PDF

Undrained shear strength and microstructural characterization of treated soft soil with recycled materials

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Abad, Seyed Vahid Alavi Nezhad Khalil;Ali, Montasir O.A.
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.427-437
    • /
    • 2019
  • Waste materials are being produced in huge quantities globally, and the usual practice is to dump them into legal or illegal landfills. Recycled tiles (RT) are being used in soil stabilisation which is considered as sustainable solution to reduce the amount of waste and solve the geotechnical problems. Although the stabilisation of soil using RT improved the soil properties, it could not achieve the standard values required for construction. Thus, this study uses 20% RT together with low cement content (2%) to stabilise soft soil. Series of consolidated undrained triaxial compression tests were conducted on untreated and RT-cement treated samples. Each test was performed at 7, 14, and 28 days curing period and 50, 100, and 200 kPa confining pressures. The results revealed an improvement in the undrained shear strength parameters (cohesion and internal frication angle) of treated specimens compared to the untreated ones. The cohesion and friction angle of the treated samples were increased with the increase in curing time and confining pressure. The peak deviator stress of treated samples increases with the increment of either the effective confining pressures or the curing period. Microstructural and chemical tests were performed on both untreated and RT-cement treated samples, which included field emission scanning electron microscopic (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX). The results indicated the formation of cementation compounds such as calcium aluminium hydrate (C-A-H) within the treated samples. Consequently, the newly formed compounds were responsible for the improvement observed in the results of the triaxial tests. This research promotes the utilisation of RT to reduce the amount of cement used in soil stabilisation for cleaner planet and sustainable environment.

Design of Hard Coating Resin for In-mold Decoration (IMD) Foil and Effects of EB Irradiation on IMD Foil Layers (In-mold Decoration(IMD) 포일용 경질 코팅 수지 설계 및 전자빔 조사가 IMD 포일 구성층에 미치는 영향)

  • Sim, Hyun-Seog;Kim, Geon-Seok;Shin, Ji-Hee;Lee, Kwang-Hee
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.268-274
    • /
    • 2012
  • The silane coupling agent, 3-(trimethoxysilyl)propyl methacrylate (${\gamma}$-MPTS), was grafted on the surface of alumina nanoparticles. We used the surface modified nanoparticles in the hard coating layer for in-mold decoration (IMD) foils and evaluated the coating properties such as hardness and anti-abrasion property. The effects of electron beam (EB) irradiation on color layer and anchor layer of IMD foils were observed through the difference in color and the cross-cut tape test, respectively. Also, cure kinetics as studied quantitatively under various reaction temperatures by analysis of surface properties and Fourier transform infrared (FTIR) spectroscopy. From these results, we constructed database for the commercial exploitation of EB curing system.

Heating Behavior of Silicon Carbide Fiber Mat under Microwave

  • Khishigbayar, Khos-Erdene;Seo, Jung-Min;Cho, Kwang-Youn
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.707-711
    • /
    • 2016
  • A small diameter of SiC fiber mat can produce much higher heat under microwave irradiation than the other types of SiC materials. Fabrication of high strength SiC fiber consists of iodine vapor curing on polycarbosilane precursor and heat treatment process. The curing stage of polycarbosilane fiber was maintained at $150-200^{\circ}C$ in a vacuum condition under the iodine vapor to fabricate a high thermal radiation SiC fiber. The structure and morphology of the fibers were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TG) and scanning electron microscopy (SEM). In this study, the thermal properties of SiC fiber mats under microwave have been analyzed with an IR thermal camera and its image analyzer. The prepared SiC fiber mats radiated high temperature with extremely high heating rate up to $1100^{\circ}C$ in 30 seconds. The fabricated SiC fiber mats were not oxidized after the heat radiation process under the microwave irradiation.

Comparison of the degree of conversion of light-cured resin cement in regard to porcelain laminate thickness, light source and curing time using FT-IR (도재 라미네이트 두께와 광원 및 광조사 시간에 따른 광중합형 레진 시멘트의 FT-IR을 이용한 중합도 비교)

  • Yuh, Chi-Sung;Kim, Jee-Hwan;Kim, Sun-Jai;Lee, Yong-Keun;Shim, June-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.416-423
    • /
    • 2009
  • Statement of problem: The degree of light attenuation at the time of cementation of the PLV restoration depends on characteristics such as thickness, opacity and shade of the restorations, which interfere with light transmittance and, as a result, may decrease the total energy reaching the luting cement. Purpose: The purpose of this study was to compare the degree of conversion of light-cured resin cements measuring by FT-IR in regard to different thickness, light devices and curing time. Material and methods: In the control group, a clear slide glass (1.0 mm) was positioned between the light cured resin cement and light source. The specimens of ceramics were made with IPS Empress Esthetic. The ceramics were fabricated with varying thicknesses-0.5, 1.0, 1.5 mm with shade ETC1. Rely $X^{TM}$ Veneer with shade A3, light-cured resin cement, was used. Light-activation was conducted through the ceramic using a quartz tungsten halogen curing unit, a light emitting diode curing unit and a plasma arc curing unit. The degree of conversion of the light-cured resin cement was evaluated using FT-IR and OMNIC. One-way ANOVA and Tukey HSD test were used for statistical analysis ($\alpha$< .05). Results: The degree of conversion (DC) of photopolymerization using QTH and LED was higher than results of using PAC in the control group. After polymerization using QTH and LED, the DC results from the different ceramic thickness- 0.5 mm, 1.0 mm, 1.5 mm- did not show a significant difference when compared with those of control group. However, the DC for polymerization using PAC in the 1.5mm ceramic group showed significantly lower DC than those of the control group and 0.5 mm ceramic group (P<.05). At 80s and 160s, the DC of light-cured resin cement beneath 1.0 mm ceramic using LED was significantly higher than at 20s (P<.05). Conclusion: Within the limitation of this study, when adhering PLV to porcelain with a thickness between 0.5-1.5 mm, the use of PAC curing units were not considered however, light cured resin cements were effective when cured for over 40 seconds with QTH or LED curing units. Also, when curing the light cured resin cements with LED, the degree of polymerization was not proportional with the curing time. Curing exceeding a certain curing time, did not significantly affect the degree of polymerization.