• Title/Summary/Keyword: Infrared Sources

Search Result 250, Processing Time 0.028 seconds

Operating Characteristic Analysis of Optic Temperature Sensor for Overheat Detection in Panel Board (분전함에서 이상발열 감지를 위한 광온도센서의 동작특성 분석)

  • Moon, Hyun-Wook;Kim, Dong-Woo;Gil, Hyung-Jun;Kim, Dong-Ook;Lee, Ki-Yeon;Kim, Hyang-Kon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.100-106
    • /
    • 2009
  • In this study, methods of overheat detection at the coupling or wire in electrical facility are investigated, operating characteristic about the optic temperature sensor for continuous on-line temperature monitoring in diagnostics system of electrical facility is analyzed. Heating sources in the experiment for operating characteristics of optic temperature sensor use black body and hot plate, output voltage of optic temperature sensor in accordance with temperature variation is analyzed. Overheat generation due to poor contact at the circuit breaker in panel board detects using a thermocouple, infrared thermal camera and optic temperature sensor, and experiment results are analyzed. The effect of optic temperature sensor is the same that of other methods. These results expect to use basic research material for adjusting field of electrical diagnostics system using RFID type optic temperature sensor in the near future.

General Behaviors and Perching Behaviors of Laying Hens in Cages with Different Colored Perches

  • Chen, D.H.;Bao, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.5
    • /
    • pp.717-724
    • /
    • 2012
  • Color is one of the perch properties. This study was conducted to investigate the general behaviors and perching behaviors in laying hens under different group size (stocking density), and to understand the perch color (black, white or brown) preference of hens during the night. A total of 390 Hyline Brown laying hens was used, and randomly allocated to three treatments: individual group (G1), group of four hens (G4), and group of eight hens (G8), respectively. There were 30 replicates in each group. The hens in G1, G4 and G8 groups were put into the test cages in which three colored perches were simultaneously provided and allowed for four days of habituation in the new cages. Hens behaviors were recorded using cameras with infrared light sources for the following periods: 8:00 to 10:00; 14:00 to 16:00; 19:00 to 21:00; 23:30 to 0:30 on the fifth day after transferring the birds into the test cages. The behaviors of hens in every time period were collected and analyzed, and hens positions on the test perches during mid-night were recorded. The results showed that, group size (stocking density) had significant effect on most of the general behaviors of laying hens except exploring behavior. There were great differences in most of the general behaviors during different time periods. In the preference test of perch color during night, the hens showed no clear preference for white, black or brown perches. For perching behaviors, perching time and frequency of transferring from one perch to another was higher on black perches than on white or brown perches in individual groups. In G4 groups, the hens spent more time on white perches during daytime and more frequent transferring during night compared with black or brown perches. The frequency of jumping upon and down from white perches was higher in G8 groups. It can be concluded that although the group sizes in the cage significantly affected most of the general behaviors, we found that no preference of perch color was shown by the caged laying hens in the different group sizes tested in this study.

EEFL using intelligent lighting system control device (EEFL을 이용한 지능형 조명시스템 제어장치)

  • Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.11 no.4
    • /
    • pp.229-234
    • /
    • 2013
  • The purpose of this study is to develop a lighting apparatus of the illuminance and color temperature to maximize the ability of the optimal combination of light sources that can be controlled efficiently control device. Finding people comfortable feeling for indoor lighting that can be used in a variety of color temperature illumination area by combining light sensitivity can be realized. Lighting apparatus for fluorescent lamps with different color temperature of 2000K and 8000K, and by varying the quantity of each of the fluorescent lamps, the illuminance of lighting equipment and color temperature through optical simulations were evaluated. By infrared remote control receiver, divided into 5 types of relaxation, conversation, meeting, hospitality, arts and the lighting environment you want to transfer the PC0 ~ PC4 through the parallel port on the mode selected by the user at the receiving end the DC voltage output. EEFL inverter input DC voltage and the DC input voltage, depending on the level of EEFL dimming value (illuminance and color temperature) lighting environment you want to create change while using a PIR sensor EEFL automatically turn off if people do not have was developed so that the power consumption so you can save.

Emotion Recognition using Facial Thermal Images

  • Eom, Jin-Sup;Sohn, Jin-Hun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.427-435
    • /
    • 2012
  • The aim of this study is to investigate facial temperature changes induced by facial expression and emotional state in order to recognize a persons emotion using facial thermal images. Background: Facial thermal images have two advantages compared to visual images. Firstly, facial temperature measured by thermal camera does not depend on skin color, darkness, and lighting condition. Secondly, facial thermal images are changed not only by facial expression but also emotional state. To our knowledge, there is no study to concurrently investigate these two sources of facial temperature changes. Method: 231 students participated in the experiment. Four kinds of stimuli inducing anger, fear, boredom, and neutral were presented to participants and the facial temperatures were measured by an infrared camera. Each stimulus consisted of baseline and emotion period. Baseline period lasted during 1min and emotion period 1~3min. In the data analysis, the temperature differences between the baseline and emotion state were analyzed. Eyes, mouth, and glabella were selected for facial expression features, and forehead, nose, cheeks were selected for emotional state features. Results: The temperatures of eyes, mouth, glanella, forehead, and nose area were significantly decreased during the emotional experience and the changes were significantly different by the kind of emotion. The result of linear discriminant analysis for emotion recognition showed that the correct classification percentage in four emotions was 62.7% when using both facial expression features and emotional state features. The accuracy was slightly but significantly decreased at 56.7% when using only facial expression features, and the accuracy was 40.2% when using only emotional state features. Conclusion: Facial expression features are essential in emotion recognition, but emotion state features are also important to classify the emotion. Application: The results of this study can be applied to human-computer interaction system in the work places or the automobiles.

The black hole mass-stellar velocity relation of the present-day active galaxies

  • Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.79-79
    • /
    • 2010
  • To investigate whether the present-day active galaxies follow the same black hole mass vs. stellar velocity dispersion (MBH-$\sigma*$) relation as quiescent galaxies, we measured the velocity dispersions of a sample of local Seyfert 1 galaxies, for which black hole masses were measured via reverberation mapping. We measured stellar velocity dispersions from high S/N optical spectra centered on the Ca II triplet region (${\sim}8500^{\circ}A$), obtained at the Keck, Palomar, and Lick Observatories. For two objects, in which the Ca II triplet region was contaminated by nuclear emission, we used high-quality H-band spectra obtained with the OH-Suppressing Infrared Imaging Spectrograph and laser-guide star adaptive optics at the Keck-II Telescope. Combining our new measurements with data from the literature, we assemble a sample of 24 active galaxies with stellar velocity dispersions and reverberation MBH in the range of black hole mass 106< MBH /$M{\odot}$ < 109,toobtainthefirstreverberationmappingconstraintsontheslopeandintrinsicscatteroftheMBH- $\sigma*$ relation of active galaxies. Assuming a constant virial coefficient f for the reverberation MBH, we find a slope ${\beta}=3.55{\pm}0.60$ and the intrinsic scatter ${\sigma}int=0.43{\pm}0.08$ dex in the relation log (MBH/M${\odot}$)=$\alpha+\beta$ log(${\sigma}*$/200 km s-1), which are consistent with those found for quiescent galaxies. We derive an updated value of the virial coefficient f by finding the value which places the reverberation masses in best agreement with the MBH - $\sigma*$ relation of quiescent galaxies; using the quiescent MBH - $\sigma*$ relation determined by Gultekin et al. we find log f=0.72+0.09 (or $0.71{\pm}0.10$) with an intrinsic scatter of $0.44{\pm}0.07$ (or 0.46+0.07) dex. No correlations between f and parameters connected to the physics of accretion (such as the Eddington ratio or line-shape measurements) are found. The uncertainty of the virial coefficient remains one of the main sources of the uncertainty in black hole mass determination using reverberation mapping, and therefore also in single-epoch spectroscopic estimates of black hole masses in active galaxies.

  • PDF

Effect of Different Lighting Sources on Behavior and Growth of Weanling Pigs

  • Glatz, P.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.2
    • /
    • pp.280-287
    • /
    • 2001
  • These studies aimed to determine how lighting might be used to improve feed intake and reduce aggressive behavior in newly weaned pigs. To examine whether this objective could be achieved an experiment was conducted to compare performance, behavior and body condition of weaners over 17-45 days, provided similar lighting quality (i.e. color temperature, color rendering index and lighting distribution) after weaning that piglets experienced prior to weaning. Triphosphor (TP) lighting to simulate daylight was provided during the day while at night, Pascal red (PR) lighting was provided to simulate the night-light piglets previously had received from infrared heating lamps. This treatment was compared to weaners provided conventional cool-white fluorescent light during the day only. Weaners on treatment lighting from 17-45 days of age showed no improvement in body weight or feed conversion at 24, 31, 38 and 45 days compared to the controls. There was, however, a significant improvement (p<0.05) in feed intake in the first week of weaning for weaners provided TP/PR lighting. Over the first 3 days of weaning, pigs on TP/PR lighting showed an increase (p<0.05) in the incidence of ear chewing but reduced (p<0.05) levels of nosing the abdomen of other pigs and reduced (p<0.05) occurrences of being stood on by other pigs. Females exhibited more (p<0.05) mounting and nosing behaviors and rubbing the heads of other pigs than males. On the other hand, males engaged in more (p<0.05) fighting, nipping, ear chewing and standing on other pigs compared to females. Pigs provided PR lighting on the first night of weaning engaged in higher (p<0.05) incidences of nosing and tail sucking behaviors, more (p<0.05) head thrusting, fighting and ear chewing compared to control pigs. The body condition of weaners provided the TP/PR lighting treatment was significantly poorer (p<0.05) compared to weaners on control lighting. In conclusion there was no improvement in production performance of weaners provided new technology lighting apart from the improvement in feed intake in the first week weaners were exposed to the TP/PR lighting.

Emission Plasma Spectroscopy of High-pressure Microdischarges

  • Lee, Byeong-Jun;Ju, Yeong-Do;Kim, Seung-Hwan;Ha, Tae-Gyun;Gong, Hyeong-Seop;Park, Yong-Jeong;Park, Jong-Do;Nam, Sang-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.253.2-253.2
    • /
    • 2014
  • Micro hollow cathode discharges (MHCDs) are high-pressure, non-equilibrium discharges. Those MHCDs are useful to produce an excimer radiation. A major advantage of excimer sources is their high internal efficiency which may reach values up to 40% when operated under optimum conditions. To produce strong excimer radiation, the optimisation of the discharge conditions however needs a detailed knowledge of the properties of the discharge plasma itself. The electron density and temperature influence the excitation as well as plasma chemistry reactions and the gas temperature plays a major role as a significant energy loss process limiting efficiency of excimer radiation. Most of the recent spectroscopic investigations are focusing on the ultraviolet or vacuum ultraviolet range for direct detection of the excimer. In our experiments we have concentrated on investigating the micro hollow cathodes from the near UV to the near infrared (300~850 nm) to measure the basic plasma parameters using standard plasma diagnostic techniques such as stark broadening for electron density and the relative line intensity method for electron temperature. Finally, the neutral gas temperature was measured by means of the vibrational rotational structures of the second positive system of nitrogen.

  • PDF

Multi-wavelength Study of Blazars Using Variability as a Tool

  • Baliyan, Kiran S.;Kaur, Navpreet;Chandra, Sunil;Sameer, Sameer;Ganesh, Shashikiran
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.177-183
    • /
    • 2016
  • Active galactic nuclei (AGN) are too compact to be resolved by any existing optical telescope facility, making it difficult to understand their structure and the emission processes responsible for their huge energy output. However, variability, one of their characteristic properties, provides a tool to probe the inner regions of AGN. Blazars are the best candidates for such a study, and hence a considerable amount of effort is being made to investigate variability in these sources across the electromagnetic spectrum. Here, using the Mt. Abu infrared observatory (MIRO) blazar monitoring program, we present intra-night, inter-night, and long term aspects of the variability in S5 0716+71, 3C66A, and OJ 287. These stars show significant variability on short (a few tens of mins, to a few hours, to a few days) to long term (months to years) timescales. Based on the light travel time argument, the shortest variability timescales (micro-variability) provide upper limits to the size of the emission region. While S5 0716 shows a very high duty cycle of variability (> 80 %), 3C66A shows a much lower intra day variability (IDV) duty cycle (< 20 %). All three show rapid variations within 2.5 to 3.5 hr, which, perhaps, are generated near the vicinity of black holes. Assuming this, estimates of the masses of the black holes are made at ~109, 8×108, and 2.7×109 M for S5 0716+71, 3C66A, and OJ 287, respectively. Multi-wavelength light-curves for the blazar PKS 1510-089 are discussed to infer the emission processes responsible for the recent flaring episodes in this source.

A Study on Synthetic Method and Material Analysis of Calcium Ammine Chloride as Ammonia Transport Materials for Solid SCR (Solid SCR용 암모니아 저장물질인 Calcium Ammine Chloride의 합성방법 및 물질분석 연구)

  • Shin, Jong Kook;Yoon, Cheon Seog;Kim, Hongsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.199-207
    • /
    • 2015
  • Solid materials of ammonia sources with SCR have been considered for the application of lean NOx reduction in automobile industry, to overcome complex problems of liquid urea based SCR. These solid materials produce ammonia gas directly with proper heating and can be packaged by compact size, because of high volumetric ammonia density. Among ammonium salts and metal ammine chlorides, calcium ammine chloride was focused on this paper due to low decomposition temperature. In order to make calcium ammine chloride in lab-scale, simple reactor and glove box was designed and built with ammonium gas tank, regulator, and sensors. Basic test conditions of charging ammonia gas to anhydrous calcium chloride are chosen from equilibrium vapor pressure by Van't Hoff plot based on thermodynamic properties of materials. Synthetic method of calcium ammine chloride were studied for different durations, temperatures, and pressures with proper ammonia gas charged, as a respect of ammonia gas adsorption rate(%) from simple weight calculations which were confirmed by IC. Also, lab-made calcium ammine chloride were analyzed by TGA and DSC to clarify decomposition step in the equations of chemical reaction. To understand material characteristics for lab-made calcium ammine chloride, DA, XRD and FT-IR analysis were performed with published data of literature. From analytical results, water content in lab-made calcium ammine chloride can be discovered and new test procedures of water removal were proposed.

Satellite Rainfall Monitoring: Recent Progress and Its Potential Applicability (인공위성 강우모니터링: 최근 동향 및 활용 방안)

  • Kim Seong-Joon;Shin Sa-Chul;Suh Ae-Sook
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.2
    • /
    • pp.142-150
    • /
    • 1999
  • During the past three decades after the first attempt to use satellite imagery or derived cloud products for rainfall estimation, much is known and understood concerning the scope and difficulties of satellite rainfall monitoring. After a brief general introduction this paper reviews recent progress in this field with special reference to improvement of algorithms, inter-comparison projects, integrative use of data from different sources, increasing lengths of data records and derived products, and interpretability of rainfall results. Also the paradigm of TRMM (Tropical Rainfall Measuring Mission) which is the first space mission(1997) dedicated to measuring tropical and subtropical rainfall though microwave and visible/infrared sensors, including the first spaceborne rain radar was introduced, and the potential applicability to the field of agriculture and water resources by combining satellite imagery is described.

  • PDF