• 제목/요약/키워드: Infrared Sensing Sensor

검색결과 160건 처리시간 0.032초

Improvement of Land Cover / Land Use Classification by Combination of Optical and Microwave Remote Sensing Data

  • Duong, Nguyen Dinh
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.426-428
    • /
    • 2003
  • Optical and microwave remote sensing data have been widely used in land cover and land use classification. Thanks to the spectral absorption characteristics of ground object in visible and near infrared region, optical data enables to extract different land cover types according to their material composition like water body, vegetation cover or bare land. On the other hand, microwave sensor receives backscatter radiance which contains information on surface roughness, object density and their 3-D structure that are very important complementary information to interpret land use and land cover. Separate use of these data have brought many successful results in practice. However, the accuracy of the land use / land cover established by this methodology still has some problems. One of the way to improve accuracy of the land use / land cover classification is just combination of both optical and microwave data in analysis. In this paper for the research, the author used LANDSAT TM scene 127/45 acquired on October 21, 1992, JERS-1 SAR scene 119/265 acquired on October 27, 1992 and aerial photographs taken on October 21, 1992. The study area has been selected in Hanoi City and surrounding area, Vietnam. This is a flat agricultural area with various land use types as water rice, secondary crops like maize, cassava, vegetables cultivation as cucumber, tomato etc. mixed with human settlement and some manufacture facilities as brick and ceramic factories. The use of only optical or microwave data could result in misclassification among some land use features as settlement and vegetables cultivation using frame stages. By combination of multitemporal JERS-1 SAR and TM data these errors have been eliminated so that accuracy of the final land use / land cover map has been improved. The paper describes a methodology for data combination and presents results achieved by the proposed approach.

  • PDF

모터컨트롤센터의 BUS BAR 이상 감지를 위한 실험적 연구 (A study on sensing for abnormality of BUS BAR in motor control center)

  • 김성대
    • 한국산학기술학회논문지
    • /
    • 제12권12호
    • /
    • pp.5838-5842
    • /
    • 2011
  • 본 연구는 고용량의 모터를 구동하기 위한 모터컨트롤센터(MCC)의 내부 구조 중 각 상(R,S,T)의 BUS BAR의 온도와 BUS BAR 볼트 체결부의 온도변화가 모터컨트롤센터의 노후화 및 진동에 따라 어떠한 차이가 있는지를 적외선 온도센서가 설치된 온도측정용 2차원 기구부를 설계 제작하고 모터컨트롤센터의 내부에 설치하여 BUS BAR의 온도 및 전류 변화량을 상시 모니터링 하였다. 실험을 통하여 부하에 따른 BUS BAR의 온도 변화를 BUS BAR 나사 체결부위를 중심으로 측정하였으며, BUS BAR의 온도변화와 소모 전류에 대한 비례관계를 확인할 수 있었다. 또한 이러한 비접촉식 2차원 온도측정 시스템을 모터컨트롤센터 내부에 장착하면 부하의 과전류로 인한 온도 상승이나 접촉 불량 등으로 발생될 수 있는 정전이나 화재 사고를 예방할 수 있을 것으로 기대된다.

Conceptual Study of GEO and LEO Sensors Characteristics for Monitoring Ocean Color around Korean Peninsula

  • Kang Gumsil;Kang Songdoug;Yong Sangsoon;Kim Jongah;Chang Youngjun;Youn Heongsik
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.505-508
    • /
    • 2004
  • Korea Aerospace Research Institute (KARI) has a plan to launch COMS for consistent monitoring of the Korean Peninsula. Korea Geostationary Ocean Color Imager (GOCI) is one of the main payloads of COMS which will provide a monitoring of ocean-colour around the Korean Peninsula from geostationary platforms. Ocean color observation from geostationary platform is required to achieve the proper spatial and temporal resolution for coastal observation mission. In this paper the characteristics of GOCI and LEO sensors are discussed. GOCI will provide the measurement data of 6 visible channels and 2 near-infrared channels (400nm ~ 900nm). The integration time and aperture diameter required to achieve the SNR specification of KGOCI are analyzed.

  • PDF

PIR 센서와 정전류 IC를 이용한 인체 감지형 POWER LED 구동 회로 (A Human Body Sensing POWER LED Drive Circuit Using Constant-Current IC and PIR Sensor)

  • 박종연;유진완;최왕섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.2295-2296
    • /
    • 2008
  • 본 논문에서는 에너지 절감을 위하여 POWER LED 구동회로를 PIR(Pyroelectric Infrared Ray) 센서를 이용하여 ON/OFF 제어를 하였다. POWER LED의 전류 특성을 설명하였으며 설명된 전류 특성을 개선하고자 정전류 유지 회로를 구성하였다. 그리고 인체 감지 센서에서 발생되는 ON/OFF 신호를 증폭시키는 구동 회로를 설계하여 정전류 유지 회로에 직접 결합하는 방식을 제안하였다. 실험한 결과는 POWER LED의 ON 상태시 4Watt, OFF 상태시 0.5Watt를 소비하였으며, 정전류 유지 회로에 의해 POWER LED 구동 전류의 리플이 줄어들어 안정적인 동작을 하는 것으로 나타났다.

  • PDF

자율이동로봇의 영상인식 미로탐색시스템 (Maze Navigation System Using Image Recognition for Autonomous Mobile Robot)

  • 이정훈;강성호;엄기환
    • 제어로봇시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.429-434
    • /
    • 2005
  • In this paper, the maze navigation system using image recognition for autonomous mobile robot is proposed. The proposed maze navigation system searches the target by image recognition method based on ADALINE neural network. The infrared sensor system must travel all blocks to find target because it can recognize only one block information each time. But the proposed maze navigation system can reduce the number of traveling blocks because of the ability of sensing several blocks at once. Especially, due to the simplicity of the algorithm, the proposed method could be easily implemented to the system which has low capacity processor.

Land Mine Detecting Technology by Using IR Cameras

  • Shimoi, Nobuhiro;Takita, Yoshihiro;Nonami, Kenzo;Wasaki, Katsumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.28.4-28
    • /
    • 2001
  • This paper proposes an IR camera system that performs the task of removing mines for humanitarian purposes. Because of the high risks involved, it is necessary to conduct mine detection from the most remote endeavoring. By mating use of infrared ray (IR) cameras, scattered mines can be detected from remote locations. In the case of mines buried in the ground, detection is possible if the peripheral temperature difference is large enough between the ground and mine weapon. As one of the world´s advanced nations in sensor technology, Japan should promote surveys and studies for detecting mines safely by using its advanced remote sensing technologies.

  • PDF

가상트레이너와 함께하는 센서형 헬스케어 콘텐츠 시스템 (Sensors-type healthcare content system with virtual trainers)

  • 현의주;김동영;윤선정
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제60차 하계학술대회논문집 27권2호
    • /
    • pp.151-152
    • /
    • 2019
  • 운동 기구를 이용한 운동의 경우 바른 자세와 균형을 유지하는 것이 중요하다. 이에 본 논문에서는 적외선 감지센서가 부착된 디스플레이형 전신거울과 프리웨이트 운동기구에 부착된 센서를 이용하여 이용자의 정보를 인지하고 디스플레이 장치에 출력되는 가상 트레이너를 통해 균형 운동에 대한 가이드를 제공하는 게임형 콘텐츠를 설계하였다. 본 콘텐츠의 목표는 운동 시에 중요한 바른 자세를 잡기 위하여 균형 상태를 알 수 있게 하며, 가상트레이너에 의해 보다 효과적이고 흥미로우며 지속적인 운동을 가능하게 하는 방법을 제공하는 것에 있다.

  • PDF

적외선센서를 이용한 용접품질 제어에 관한 연구 (A Study on the Control of the Welding Quality Using a Infrared sensor)

  • 김일수;손준식;김학형;서주환;김인주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.754-758
    • /
    • 2005
  • Optimization of process variables such as arc current, welding voltage and welding speed in terms of the weld characteristics desired is the key step in achieving high quality and improving performance characteristics without increasing the cost. Consequently, incorrect settings of those process variables give rise to deviations in the welding characteristics from the desired bead geometry. Therefore, trainee welders are referred to the tabulated information relating different metal types and thickness as to recommend the desired values of process variables. Basically, the bead geometry plays an important role in determining the mechanical properties of the weld. So that it is very important to select the process variables for obtaining optimal bead geometry. However, it is difficult for the traditional identification methods to provide an accurate model because the optimized welding process is non-linear and time-dependent. In this paper, the possibilities of the Infra-red sensor in sensing and control of the bead geometry in the automated welding process are presented. Infra-red sensor is a well-known method to deal with the problems with a high degree of fuzziness so that the sensor is employed to build the relationship between process variables and the quality characteristic the proposed above respectively. Based on several neural networks, the mathematical models are derived from extensive experiments with different welding parameters and complex geometrical features. The developed system enables to select the optimal welding parameters and control the desired weld dimensions during arc welding process.

  • PDF

JAXA'S EARTH OBSERVING PROGRAM

  • Shimoda, Haruhisa
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.7-10
    • /
    • 2006
  • Four programs, i.e. TRMM, ADEOS2, ASTER, and ALOS are going on in Japanese Earth Observation programs. TRMM and ASTER are operating well, and TRMM operation will be continued to 2009. ADEOS2 was failed, but AMSR-E on Aqua is operating. ALOS (Advanced Land Observing Satellite) was successfully launched on $24^{th}$ Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). PRISM is a 3 line panchromatic push broom scanner with 2.5m IFOV. AVNIR-2 is a 4 channel multi spectral scanner with 10m IFOV. PALSAR is a full polarimetric active phased array SAR. PALSAR has many observation modes including full polarimetric mode and scan SAR mode. After the unfortunate accident of ADEOS2, JAXA still have plans of Earth observation programs. Next generation satellites will be launched in 2008-2012 timeframe. They are GOSAT (Greenhouse Gas Observation Satellite), GCOM-W and GCOM-C (ADEOS-2 follow on), and GPM (Global Precipitation Mission) core satellite. GOSAT will carry 2 instruments, i.e. a green house gas sensor and a cloud/aerosol imager. The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 ${\mu}m$ region with 0.2 to 0.5 $cm^{-1}$ resolution. GPM is a joint project with NASA and will carry two instruments. JAXA will develop DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. Another project is EarthCare. It is a joint project with ESA and JAXA is going to provide CPR (Cloud Profiling Radar). Discussions on future Earth Observation programs have been started including discussions on ALOS F/O.

  • PDF

Evaluation of GSICS Correction for COMS/MI Visible Channel Using S-NPP/VIIRS

  • Jin, Donghyun;Lee, Soobong;Lee, Seonyoung;Jung, Daeseong;Sim, Suyoung;Huh, Morang;Han, Kyung-soo
    • 대한원격탐사학회지
    • /
    • 제37권1호
    • /
    • pp.169-176
    • /
    • 2021
  • The Global Space-based Inter-Calibration System (GSICS) is an international partnership sponsored by World Meteorological Organization (WMO) to continue and improve climate monitoring and to ensure consistent accuracy between observation data from meteorological satellites operating around the world. The objective for GSICS is to inter-calibration from pairs of satellites observations, which includes direct comparison of collocated Geostationary Earth Orbit (GEO)-Low Earth Orbit (LEO) observations. One of the GSICS inter-calibration methods, the Ray-matching technique, is a surrogate approach that uses matched, co-angled and co-located pixels to transfer the calibration from a well calibrated satellite sensor to another sensor. In Korea, the first GEO satellite, Communication Ocean and Meteorological Satellite (COMS), is used to participate in the GSICS program. The National Meteorological Satellite Center (NMSC), which operated COMS/MI, calculated the Radiative Transfer Model (RTM)-based GSICS coefficient coefficients. The L1P reproduced through GSICS correction coefficient showed lower RMSE and Bias than L1B without GSICS correction coefficient applied. The calculation cycles of the GSICS correction coefficients for COMS/MI visible channel are provided annual and diurnal (2, 5, 10, 14-day), but long-term evaluation according to these cycles was not performed. The purpose of this paper is to perform evaluation depending on the annual/diurnal cycles of COMS/MI GSICS correction coefficients based on the ray-matching technique using Suomi-NPP/Visible Infrared Imaging Radiometer Suite (VIIRS) data as reference data. As a result of evaluation, the diurnal cycle had a higher coincidence rate with the reference data than the annual cycle, and the 14-day diurnal cycle was the most suitable for use as the GSICS correction coefficient.