• Title/Summary/Keyword: Infrared Image Processing

Search Result 203, Processing Time 0.025 seconds

Infrared and Visible Image Fusion Based on NSCT and Deep Learning

  • Feng, Xin
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1405-1419
    • /
    • 2018
  • An image fusion method is proposed on the basis of depth model segmentation to overcome the shortcomings of noise interference and artifacts caused by infrared and visible image fusion. Firstly, the deep Boltzmann machine is used to perform the priori learning of infrared and visible target and background contour, and the depth segmentation model of the contour is constructed. The Split Bregman iterative algorithm is employed to gain the optimal energy segmentation of infrared and visible image contours. Then, the nonsubsampled contourlet transform (NSCT) transform is taken to decompose the source image, and the corresponding rules are used to integrate the coefficients in the light of the segmented background contour. Finally, the NSCT inverse transform is used to reconstruct the fused image. The simulation results of MATLAB indicates that the proposed algorithm can obtain the fusion result of both target and background contours effectively, with a high contrast and noise suppression in subjective evaluation as well as great merits in objective quantitative indicators.

Development of an Infrared Imaging-Based Illegal Camera Detection Sensor Module in Android Environments (안드로이드 환경에서의 적외선 영상 기반 불법 촬영 카메라 탐지 센서 모듈 개발)

  • Kim, Moonnyeon;Lee, Hyungman;Hong, Sungmin;Kim, Sungyoung
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.131-137
    • /
    • 2022
  • Crimes related to illegal cameras are steadily increasing and causing social problems. Owing to the development of camera technology, the miniaturization and high performance of illegal cameras have caused anxiety among many people. This study is for detecting hidden cameras effectively such that they could not be easily detected by human eyes. An image sensor-based module with 940 nm wavelength infrared detection technology was developed, and an image processing algorithm was developed to selectively detect illegal cameras. Based on the Android smartphone environment, image processing technology was applied to an image acquired from an infrared camera, and a detection sensor module that is less sensitive to ambient brightness noise was studied. Experiments and optimization studies were conducted according to the Gaussian blur size, adaptive threshold size, and detection distance. The performance of the infrared image-based illegal camera detection sensor module was excellent. This is expected to contribute to the prevention of crimes related to illegal cameras.

A Study on Heat Transfer Characteristics of Impinging Jet about Distance Ratio leer Thermal Control (전열제어를 위한 충돌제트의 거리비에 따른 열전달특성에 관한 연구)

  • 김동균;김정환;배석태;김시범;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1237-1243
    • /
    • 2001
  • This paper presents an information about the heat transfer characteristics of impinging jet in eletronic equipment with infrared image processing unit. There have been many experimental investigations and theoretical studies on impinging jet because of application in a wide variety of industrial process including electronic equipment. In this study, we used infrared image processing unit to visualize heat transfer characteristics of impinging jet in eletronic equipment. Infrared image processing unit is one of non-contact temperature measuring methods and it is possible to minimize flow resistance and this measurement is comparatively accurate. The main parameters are distance between nozz1e and heat source. Reynolds number is 6000.

  • PDF

Fisheye Lens for Image Processing Applications

  • Kweon, Gyeong-Il;Choi, Young-Ho;Laikin, Milton
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.79-87
    • /
    • 2008
  • We have developed a miniature fisheye lens with $190^{\circ}$ field of view operating simultaneously in the visible and the near infrared wavelengths. The modulation transfer function characteristic for the visible wavelength is sufficient for a mega-pixel-grade image sensor. The lens also has a fair resolution in the infrared wavelength region. The calibrated $f-{\theta}$ distortion is less than 5%, and the relative illumination is over 90%. In consequence, a sharp wide-angle image can be obtained which is uniform in brightness over the entire range of field angles. The real image heights for the visible and the near infrared wavelengths have been fitted to polynomial functions of incidence angle with sub-pixel accuracies. Combined with the near equidistance projection scheme of the lens, this lens can be advantageously employed in various image-processing applications requiring a wide-angle lens.

A Hybrid Method for Recognizing Existence of Power Lines in Infrared Images (적외선영상내 전력선 검출을 위한 하이브리드 방법)

  • Jonghee, Kim;Chanho, Jung
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.742-745
    • /
    • 2022
  • In this paper, we propose a hybrid image processing and deep learning-based method for detecting the presence of power lines in infrared images. Deep learning-based methods can learn feature vectors from a large number of data without much effort, resulting in outstanding performances in various fields. However, it is difficult to apply human intuition to the deep learning-based methods while image processing techniques can be used to apply human intuition. Based on these, we propose a method that exploits both advantages to detect the existence of power lines in infrared images. To this end, five methods have been applied and compared to find the most effective image processing technique for detecting the presence of power lines. As a result, the proposed method achieves 99.48% of accuracy which is higher than those of methods based on either image processing or deep learning.

Infrared Image Enhancement Using A Histogram Partition Stretching and Shrinking Method (히스토그램 분할 펼침과 축소 방법을 이용한 적외선 영상 개선)

  • Jung, Min Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.50-55
    • /
    • 2015
  • This paper proposes a new histogram partition stretching and shrinking method for infrared image enhancement. The proposed method divides the histogram of an input image into three partitions according to its mean value and standard deviation. The method stretches both the dark partition and the bright partition of the histogram, while it shrinks the medium partition. As the result, both the dark part and the bright part of the image have more brightness levels. The proposed method is implemented using C language in an embedded Linux system for a high-speed real-time image processing. Experiments were conducted by using various infrared images. The results show that the proposed algorithm is successful for the infrared image enhancement.

Integral Field Spectroscopic Data Reduction Method for High Resolution Infrared Observation

  • Lee, Sung-Ho;Pak, Soo-Jong;Choi, Min-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.309-318
    • /
    • 2010
  • We introduce a technical approach for reducing three-dimensional infrared (IR) spectroscopic data generated by integral field spectroscopy or slit-scanning observations. The first part of data reduction using IRAF presents a guideline for processing spectral images from long-slit IR spectroscopy. Multichannel image reconstruction, Image Analysis and Display (MIRIAD) is used in the later part to construct and analyze the data cubes which contain spatial and kinematic information of the objects. This technic has been applied to a sample data set of diffuse 2.1218 ${\mu}m$ $H_2$ 1-0 S(1) emission features observed by slit-scanning around Sgr A East in the Galactic center. Details of image processing for the high-dispersion infrared data are described to suggest a sequence of contamination cleaning and distortion correction. Practical solutions for handling data cubes are presented for survey observations with various configurations of slit positioning.

Edge Preserving Smoothing in Infrared Image using Relativity of Guided Filter

  • Kim, Il-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.27-33
    • /
    • 2018
  • In this paper, we propose an efficient edge preserving smoothing filter for Infrared image that can reduce noise while preserving edge information. Infrared images suffer from low signal-to-noise ratio, low edge detail information and low contrast. So, detail enhancement and noise reduction play crucial roles in infrared image processing. We first apply a guided image filter as a local analysis. After the filtering process, we optimization globally using relativity of guided image filter. Our method outperforms the previous methods in removing the noise while preserving edge information and detail enhancement.

Research on Local and Global Infrared Image Pre-Processing Methods for Deep Learning Based Guided Weapon Target Detection

  • Jae-Yong Baek;Dae-Hyeon Park;Hyuk-Jin Shin;Yong-Sang Yoo;Deok-Woong Kim;Du-Hwan Hur;SeungHwan Bae;Jun-Ho Cheon;Seung-Hwan Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.41-51
    • /
    • 2024
  • In this paper, we explore the enhancement of target detection accuracy in the guided weapon using deep learning object detection on infrared (IR) images. Due to the characteristics of IR images being influenced by factors such as time and temperature, it's crucial to ensure a consistent representation of object features in various environments when training the model. A simple way to address this is by emphasizing the features of target objects and reducing noise within the infrared images through appropriate pre-processing techniques. However, in previous studies, there has not been sufficient discussion on pre-processing methods in learning deep learning models based on infrared images. In this paper, we aim to investigate the impact of image pre-processing techniques on infrared image-based training for object detection. To achieve this, we analyze the pre-processing results on infrared images that utilized global or local information from the video and the image. In addition, in order to confirm the impact of images converted by each pre-processing technique on object detector training, we learn the YOLOX target detector for images processed by various pre-processing methods and analyze them. In particular, the results of the experiments using the CLAHE (Contrast Limited Adaptive Histogram Equalization) shows the highest detection accuracy with a mean average precision (mAP) of 81.9%.

High-performance of Deep learning Colorization With Wavelet fusion (웨이블릿 퓨전에 의한 딥러닝 색상화의 성능 향상)

  • Kim, Young-Back;Choi, Hyun;Cho, Joong-Hwee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.6
    • /
    • pp.313-319
    • /
    • 2018
  • We propose a post-processing algorithm to improve the quality of the RGB image generated by deep learning based colorization from the gray-scale image of an infrared camera. Wavelet fusion is used to generate a new luminance component of the RGB image luminance component from the deep learning model and the luminance component of the infrared camera. PSNR is increased for all experimental images by applying the proposed algorithm to RGB images generated by two deep learning models of SegNet and DCGAN. For the SegNet model, the average PSNR is improved by 1.3906dB at level 1 of the Haar wavelet method. For the DCGAN model, PSNR is improved 0.0759dB on the average at level 5 of the Daubechies wavelet method. It is also confirmed that the edge components are emphasized by the post-processing and the visibility is improved.