• Title/Summary/Keyword: Infrared Heating

Search Result 256, Processing Time 0.023 seconds

Proper Installation Distance for Heating Effect of Nano-Carbon Fiber Infrared Heating Lamp for Stable Production of Watermelon Grafted Seedlings in Winter Season (동절기 수박 접목묘의 안정적 생산을 위한 나노탄소섬유적외선 램프의 난방효과에 대한 적정 설치간격)

  • Kim, Hye Min;Jeong, Hyeon Woo;Hwang, Hee Sung;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.8-13
    • /
    • 2022
  • This study was carried out to investigate the proper wattage and installation distance for the efficient use of nano-carbon fiber infrared heating lamp (NCFIHL), a heating device advantageous for heating energy saving, when the production of watermelon plug seedlings in the plug seedling nursery in winter season. Six small beds were divided into plastic film, and 700 W and 900 W nano-carbon fiber infrared heating lamps were installed at 100 cm above the bed. 1 lamp at central (control), 60 cm interval (2 lamps), and 40 cm interval (3 lamps) heating lamps were installed in each bed inside the greenhouse. All treatments, except the control, were set to keep the night air temperature at 20℃ after lighting the NCFIHL. The leaf temperature showed a tendency to increase fast as the install distance was narrow. The leaf length and leaf width tended to increase as the installation distance of the 700 W heating lamp was narrow. The compactness was high in 700 W heating lamp with 40 cm of installation distance. Therefore, in consideration of maintaining the set temperature at night, installing 700 W electric lamps at 40 cm was an efficient power and installation distance for watermelon grafted seedlings considering economic feasibility.

A Computational Study on the Cooling Performance of a Near Infrared Radiative Heating System (근적외선 가열 시스템의 냉각 성능에 대한 수치적인 연구)

  • Yoo, Keun-Pyo;Han, Minsub;Kim, Jae-Duck;Choi, Won-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.5
    • /
    • pp.289-296
    • /
    • 2013
  • A near infrared (NIR) heating system has advantages over the conventional convection-based systems, in terms of heating uniformity and energy efficiency. When it is over-heated during its operation, the radiation lamp gets blackened, and the life of the radiation module becomes severely limited. The heat transfer system in the module is based on a high operating-temperature, and the radiation makes it difficult to analyze in detail the reliability issue, with an experimental approach alone. We developed a numerical heat-transfer model of the NIR heating system. We applied a ray-tracing method on the radiative heat transport, and a finite volume method on the conductive and convective systems, respectively. The cooling performance of the system is presented, based on the energy and flow distributions in the module. The factors that directly affect the module life are analyzed, such as the surface temperatures of the lamp glass and the reflector, and design improvements are discussed.

Analysis of Heating System for PDP Panel Using $RADCAD^{TM}$ ($RADCAD^{TM}$를 이용한 PDP용 Pane 1 가열 시스템 해석)

  • Kim, Ook-Joong;Hong, Yong-Ju;Park, Young-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.453-458
    • /
    • 2001
  • Analysis of radiation heating system for producing 60" size PDP panels was carried out using $RADCAD^{TM}$ software. Optimum arrangement of infrared heating elements was found to obtain uniform temperature distribution in PDP panel during heating. Heating capacity of each heater was determined to obtain an appropriate maximum panel temperature. Parametric study to find the effect of design parameters such as the thermophysical and optical properties of glass and cooling system was carried out. As a reference system, about 35 kW heating capacity was chosen to obtain about 800 K maximum panel temperature after 30 minute heating. The maximum temperature difference in panel was below 20 K. The maximum/minimum and its difference in the panel were very sensitive to the variation of the emissivity of glass and cooling block.

  • PDF

Investgating Effects of Peak Load of Korean Power System from Electric Heating appliances except House (비주택용 전기난방기구가 우리나라 첨두부하에 미치는 영향 검토)

  • Kim, Yong-Ha;Lee, Kwang-Sung;Heo, Dong-Ryeul;Lee, Sung-Jun;Lee, Yong-Suk;Woo, Sung-Min;Son, Seung-Kee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.442-447
    • /
    • 2006
  • This paper investigates the shadow amount of edifice and according to time zone used by its Electric heating appliances, it is analyzed that Electric Heating Power Load affects Heal power load variation curve. Also, in case that the far infrared ray heating system, which are used as new electric heating system, occupies some of the existing Electric heating appliances, it is analyzed that the Electric heating power load affects the Peak load power in Korea.

  • PDF

Analysis of Visible Light Communication Module Degraded by High Dose-Rate Gamma Irradiation using Thermal Infrared Image (적외선 열영상을 이용한 가시광 통신모듈의 고선량 감마선조사에 따른 열화 분석)

  • Cho, Jai-Wan;Hong, Seok-Boong;Koo, In-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1203-1209
    • /
    • 2011
  • In this paper, the degradation evaluation method of VLC (Visible Light Communication) wireless module after high dose rate gamma-ray irradiation using the thermal infrared camera is proposed. First, the heating characteristics of the active devices embedded in the VLC wireless module during the condition of normal operation is monitored by thermal infrared camera. By the image processing technique, the trends of the intensity of the heat emitted by the active devices are calculated and stored. The feature of the blob area including the area of the active devices in the thermal infrared image is extracted and stored. The feature used in this paper is the mean value of the gray levels in the blob area. The same VLC module has been gamma irradiated at the dose rate of about 4.0 kGy/h during 72 hours up to a total dose of 288 kGy. And then, the heating characteristics of the active devices embedded in the VLC wireless module after high dose gamma ray irradiation is observed by thermal infrared camera. The high dose gamma-ray induced degradation of the active devices embedded in the VLC module was evaluated by comparing the mean value of the blob area to the one of the same blob area of the VLC module before the gamma ray irradiation.

Optimum Wattage and Installation Height of Nano-Carbon Fiber Infrared Heating Lamp for Heating Energy Saving in Plug Seedling Production Greenhouse in Winter Season (동절기 공정육묘장의 난방 에너지 절감을 위한 나노탄소섬유적외선 난방등의 적정 전력과 설치 높이)

  • Kim, Hye Min;Kim, Young Jin;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.302-307
    • /
    • 2016
  • The aim of this study was to examine the optimum wattage and installation height using nano-carbon fiber infrared heating lamp (NCFIHL) for heating energy saving and plug seedling production in plug seedling production greenhouse in winter season. NCFIHL of 700 and 900 W was installed over the bed ($1.2{\times}2.4m$) as 0.7, 1.0, and 1.3 m height, respectively, for the production of grafted watermelon seedling in venlo-type glasshouse. Watermelon (Citrullus lanatus (Thunb.) Manst.) 'Jijonggul' and gourd (Lagenaria leucantha Rusby.) 'Sunbongjang' were used as scions and rootstocks, respectively. The scions and rootstocks were grafted by single cotyledon ordinary splice grafting. Light intensity of NCFIHL was below the $1{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ in all treatment. Spectral distributions of NCFIHL presented mostly infrared area. When outside air temperature was below $10^{\circ}C$, 700 and 900 W NCFIHL installed with 0.7 m height treatment and 900 W NCFIHL installed with 1.0 m height treatment maintained the setting air temperature ($20^{\circ}C$) at night. In the result of taking thermal imaging, the grafted watermelons were getting warm fast in 900 W NCFIHL installed with 0.7 m height treatment at night. Compactness of the grafted watermelons was the greatest in 700 W NCFIHL installed with 1.3 m height treatment. The results indicate that NCFIHL installed above 1.0 m height using 700 W was suitable for production of plug seedling.

Defect Detection of Ceramic Heating Plate Using Ultrasound Pulse Thermography (초음파 펄스 서모그라피를 이용한 세라믹 전열 판의 결함 검출)

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho;Jung, Hyun-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.259-263
    • /
    • 2006
  • The applicability of UPT (Ultrasound Pulse Thermography) for real-time defect detection of the ceramic heating plate is described. The ceramic heating plate with superior insulation and high radiation is used to control the water temperature in underwater environment. The underwater temperature control system can be damaged owing to the short circuit, which resulted from the defect of the ceramic heating plate. A high power ultrasonic energy with pulse duration of 280 ms was injected into the ceramic heating plate in the vertical direction. The ultrasound excited vibration energy sent into the component propagate inside the sample until they were converted to the heat in the vicinity of the defect. Therefore, an injection of the ultrasound pulse wave which results in heat generation, turns the defect into a local thermal wave transmitter. Its local emission is monitored and recorded via the thermal infrared camera at the surface which is processed by image recording system. Measurements were Performed on 4 kinds of samples, composed of 3 intact plates and the defect plate. The observed thermal image revealed two area of crack in the defective ceramic heating plate.

EFFECT OF SOLDERING CONDITION ON THE TENSILE STRENGTH OF TITANIUM SOLDER JOINT WITH 14K GOLD SOLDER (납착조건이 14K 금납을 이용한 티타늄 납착부의 인장강도에 미치는 영향)

  • Choi, Jeoung-Ho;Kim, Tae-Jo;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.3
    • /
    • pp.566-576
    • /
    • 1997
  • This study was performed to evaluate the tensile strength of solder joint in titanium and the wettability of 14K gold solder on titanium. Two pieces of titanium rod 30 mm in length and 3mm in diameter were butt-soldered with a 14K gold solder using the electric resistance heating under flux-argon atmosphere, the infrared heating under argon atmosphere, and the infrared heating under vacuum-argon atmosphere. A tensile test was performed at a crosshead speed of 0.5 mm/min, and fracture surfaces were examined by SEM. To evaluate the wettability of 14K gold solder on titanium, titanum plates of a $17{\times}17{\times}1mm$ were polished with #80-#2000 emery papers, and the spreading areas of solder 10 mg were measured by heating at 840 * for 60 seconds. The solder-matrix interface regions were etched by the solution of 10% KCN-10% (NH4)2S2O8, and analyzed by EPMA. The results obtained were summarized as follows ; 1. The maximum tensile strength was obtained when the titanium surface was polished with #2000 emery paper and soldered using the electric resistance heating under flux-argon atmosphere. Soldering strengths showed the significant difference between the electric resistance heating and the infrared heating(p<0.05). 3. The fracture surfaces showed the aspect of brittle fracture, and the failure developed along the interfaces of solder-matrix reaction zone. 4. The EPMA data for the solder-matrix interface region revealed that the diffusion of Au and Cu occurred to the titanium matrix, and the reaction zone showed the higher contents of Au, Cu and Ti than others.

  • PDF

Tensile Characteristics of A12024-T3 under Rapid Heating (급속가열환경에서 A12024-T3의 인장특성)

  • Kim, Jong-Hwan;Kim, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.101-108
    • /
    • 2004
  • The thermomechanical tensile characteristics were evaluated for A12024-T3 under heating rates from $1^{\circ}C/sec\;to\;30^{\circ}C/sec$ by using an infrared heating equipment to simulate aerodynamic heating. The rapid heating test results were compared with tensile test results after 1/2 hour exposure in terms of yield stress to investigate the influence of heating condition. A heating rate-yield temperature parameter was suggested for rapid heating based on time-temperature parameters, and master yield stress curve was obtained by using these parameter. These test results can be used for margin of safety of supersonic vehicle structures subjected to aerodynamic heating.

Thermal Shock Resistance Property of TaC Added Ti(C,N)-Ni Cermets (TaC 첨가 Ti(C,N)-Ni 서멧의 내열충격 특성)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.526-531
    • /
    • 2014
  • Thermal shock resistance property has recently been considered to be one of the most important basic properties, in the same way that the transverse-rupture property is important for sintered hard materials such as ceramics, cemented carbides, and cermets. Attempts were made to evaluate the thermal shock resistance property of 10 vol% TaC added Ti(C,N)-Ni cermets using the infrared radiation heating method. The method uses a thin circular disk that is heated by infrared rays in the central area with a constant heat flux. The technique makes it possible to evaluate the thermal shock strength (Tss) and thermal shock fracture toughness (Tsf) directly from the electric powder charge and the time of fracture, despite the fact that Tss and Tsf consist of the thermal properties of the material tested. Tsf can be measured for a specimen with an edge notch, while Tss cannot be measured for specimens without such a notch. It was thought, however, that Tsf might depend on the radius of curvature of the edge notch. Using the Tsf data, Tss was calculated using a consideration of the stress concentration. The thermal shock resistance property of 10 vol% TaC added Ti(C,N)-Ni cermet increased with increases in the content of nitrogen and Ni. As a result, it was considered that Tss could be applied to an evaluation of the thermal shock resistance of cermets.