• Title/Summary/Keyword: Information signal

Search Result 11,655, Processing Time 0.034 seconds

Improvement of Applebaum Array Interference Cancellation in Smart Antenna System by Using Covariance Matrix Adjustment

  • Tanakorn Sukontapong;Chuwong Phogcharoenpanich;Phaisan Ngamjanyaporn;Monai Krairiksh
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.727-730
    • /
    • 2002
  • This paper proposes the interference cancellation improvement in smart antenna system by using Applebaum array covariance matrix adjustment. This technique adds the specific adjustable multipliers with both desired signal covariance matrix and interference signal covariance matrices in order to overcome some disadvantages and improve the interference cancellation efficiency of Applebaum array. It is based on the desired and undesired signal power or desired signal-to-interference-plus-thermal noise ratio (SINR). As the result from demonstration, the proposed technique can improve and increase the interference cancellation efficiency in smart antenna better than the conventional technique.

  • PDF

A Clock Monitoring Logic Suggestion at the Synchronous System (동기 시스템에서의 Clock Monitoring Logic 제안)

  • Yoon Joo-Yeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.6 s.336
    • /
    • pp.17-22
    • /
    • 2005
  • It is important that we maintain the synchronous time-information with each other in the synchronous system. The most functions in the synchronous system need the time-information. n we have the wrong time-information, the system would operate incorrectly. So, we need to check if the time-information is correct or not in the important block of the synchronous system. In this paper, we will discuss how to check the clock signal and find some problem of it. Then, we will suggest the alternative plan.

Sensorless Control of Wound Rotor Synchronous Machines Based on High-frequency Signal Injection into the Stator Windings

  • Chen, Zhiguo;Deng, Xianming;Huang, Kun;Zhen, Wenhuan;Wang, Lei
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.669-678
    • /
    • 2013
  • This paper proposes a sensorless control approach for Wound Rotor Synchronous Machines (WRSMs) based on a high frequency voltage signal injection into the stator side U phase and VW line, respectively. Considering the machine itself as a rotor position sensor, the rotor position observer is established according to the principles of the rotary transformer. A demodulation method for the high frequency signal inducted in the rotor is proposed as well. Simulation and experimental results show that the proposed sensorless control approach has high performance and good practicability.

Duplicated ECG signal decomposition (이중 심전도 신호의 분리 방법)

  • Kim, Do-Yeon;Kang, Hyun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.414-421
    • /
    • 2015
  • This paper presents a new method to decompose a duplicated ECG signal, which is measured from two people, to two individual ECG signals. In paper, it is shown that the duplicated ECG signal can be decomposed, provided that their SAECG signals are known. As the SAECG signal is the average of a ECG signal, it is a feature to identify individual ECG signals from the duplicated signal. Since the ECG signal is nearly periodic, so-called heart-rate, the period of each ECG signal can be found by using the autocorrelation of the duplicated signal, That is, the autocorrelation has high peaks at the multiple instants of heart-rate of each person. With the heart-rate of each person obtained by some processing, all R-peaks are identified by the SAECG signals. To be concrete, the SAECG signal of each person is repeatedly placed at the R-peak instants with his heart-rate, and the weight of each SAECG signal is computed by LMSE optimization. Finally, as adding the error signal in the LMSE optimization processing to the weighted SAECG signal, each individual ECG signal is obtained. In experimental results, we demonstrate that the duplicated ECG signal is successfully decomposed into two ECG signals.

Signal Synthesis Model for Active Sonar Performance Analysis (능동소나 성능분석을 위한 신호 합성 모델)

  • 이균경
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.683-686
    • /
    • 1999
  • In this paper, we develop an active sonar signal synthesis model to analyze the detection performance of active sonar systems in a shallow water environment. Using this model, we synthesize the return signal of a bistatic sonar system at a typical operating frequency. This signal can be used to test proper active sonar signal processing techniques for real applications.

  • PDF

Downlink Signal Measurement Algorithm for WCDMA/HSPA/HSPA+

  • Kwon, Bit-Na;Lee, Eui-Hak;Hong, Dae-Ki;Kang, Sung-Jin;Kang, Min-Goo;Song, Hyoung-Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3040-3053
    • /
    • 2015
  • Wideband code division multiple access (WCDMA), high speed packet access (HSPA) and HSPA+ are third generation partnership project (3GPP) standards. These systems are the major wireless communication standards. In order to test the performance of WCDMA/HSPA/HSPA+ signal in a base station, the measurement hardware is required to the evaluation of the transmitted signals. In this paper, the algorithm for the performance measurement of the WCDMA/HSPA/HSPA+ is proposed. Also, the performance of the measurement algorithm is used to evaluate the generated signal by the WCDMA/HSPA/HSPA+ signal generator. Generally, the algorithm of normal modems cannot be applied to the measurement system because the signal measurement equipment needs to guarantee the high accuracy. So, the WCDMA/HSPA/HSPA+ signal measurement algorithm for the accurate measurement is proposed. By the simulation, it is confirmed that the proposed measurement algorithm has good performance compared with the specification. Therefore, the proposed algorithm can be usefully applied to verify the performance of the measurement using the simulation.

Local Signal Design for Future GPS Systems (차세대 GPS 시스템에 알맞은 국소 신호 설계)

  • Chae, Keunhong;Yoon, Seokho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.6
    • /
    • pp.350-356
    • /
    • 2014
  • In this paper, we design a local signal to improve a tracking performance of time-multiplexed binary offset carrier (TMBOC) signal, which was adopted in modernized global positioning systems (GPS). Specifically, considering that TMBOC signal includes BOC(6,1) components, we first obtain local signal by evenly dividing sub-carrier of TMBOC(6,1,4/33) by the period of a BOC(6,1) pulse. Finally, we remove side-peaks of TMBOC(6,1,4.33) autocorrelation via combination of partial correlations given from designed local signal and solve the ambiguity problem. From numerical results, when performing signal tracking using the designed local signal, we demonstrate that the improved tracking error standard deviation (TESD) performance is offered as compared its autocorrelation and the conventional correlation functions.

Multi-Channel Data Acquisition System Design for Spiral CT Application

  • Yoo, Sun-Won;Kim, In-Su;Kim, Bong-Su;Yun Yi;Kwak, Sung-Woo;Cho, Kyu-Sung;Park, Jung-Byung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.468-470
    • /
    • 2002
  • We have designed X-ray detection system and multi-channel data acquisition system for Spiral CT application. X-ray detection system consists of scintillator and photodiode. Scintillator converts X-ray into visible light. Photodiode converts visible light into electrical signal. The multi-channel data acquisition system consists of analog, digital, master and backplane board. Analog board detects electrical signal and amplifies signal by 140dB. Digital board consists of MUX(Multiplex) which routes multi-channel analog signal to preamplifier, and ADC(Analog to Digital Converter) which converts analog signal into digital signal. Master board supplies the synchronized clock and transmits the digital data to image reconstructor. Backplane provides electrical power, analog output and clock signal. The system converts the projected X-ray signal over the detector array with large gain, samples the data in each channel sequentially, and the sampled data are transmitted to host computer in a given time frame. To meet the timing limitation, this system is very flexible since it is implemented by FPGA(Field Programmable Gate Array). This system must have a high-speed operation with low noise and high SNR(signal to noise ratio), wide dynamic range to get a high resolution image.

  • PDF

The Performance Advancement of Power Analysis Attack Using Principal Component Analysis (주성분 분석을 이용한 전력 분석 공격의 성능 향상)

  • Kim, Hee-Seok;Kim, Hyun-Min;Park, Il-Hwan;Kim, Chang-Kyun;Ryu, Heui-Su;Park, Young-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.6
    • /
    • pp.15-21
    • /
    • 2010
  • In the recent years, various researches about the signal processing have been presented to improve the performance of power analysis. Among these signal processing techniques, the research about the signal compression is not enough than a signal alignment and a noise reduction; even though that can reduce considerably the computation time for the power analysis. But, the existing compression method can sometimes reduce the performance of the power analysis because those are the unsophisticated method not considering the characteristic of the signal. In this paper, we propose the new PCA (principal component analysis)-based signal compression method, which can block the loss of the meaningful factor of the original signal as much as possible, considering the characteristic of the signal. Also, we prove the performance of our method by carrying out the experiment.