• 제목/요약/키워드: Information map

검색결과 6,313건 처리시간 0.029초

의약분업(醫藥分業) 실시(實施)에 따른 보건소(保健所)의 내부변화(內部變化)와 업무개선방안(業務改善方案) (Internal Changes and Countermeasure for Performance Improvement by Separation of Prescribing and Dispensing Practice in Health Center)

  • 정명선;감신;김태웅
    • 농촌의학ㆍ지역보건
    • /
    • 제26권1호
    • /
    • pp.19-35
    • /
    • 2001
  • 보건소의 의약분업 시행에 따른 업무변화와 업무 개선방안에 대해 조사 분석하여 보건소의 기능 및 역할 재정립에 필요한 기초자료를 얻고자 2001년 4월과 5월에 경상북도내 25개 보건소와 대구광역시 6개 보건소의 소장 또는 과장에게 의약분업 실시 전후의 보건소 업무 및 진료실적변화 정도를 조사하였고, 이와 함께 보건소 공무원 221명에게 의약분업에 따른 보건소 업무개선방안에 대해 설문 조사하였다. 31개 대상 보건소 가운데 77.4%인 24개 보건소가 주민진료편의 조치를 취하였다고 하였다. 주민 진료편의 조치를 한 보건소의 조치내용으로 약국배치도마련(73.9%), 인테리어 개선(39.1%), 전자처방전달시스템 도입(34.8%) 순이었다. 의약분업 실시 후 의사는 대상 보건소의 3.2%에서 감소하였다. 의약분업에 따라 월평균 진료건수는 대상 보건소의 58.1%에서 감소하였다고 하였고, 조제건수는 96.4%, 총진료비는 80.6%, 본인부담금은 80.6%, 약품구입비는 96.7%의 보건소에서 감소하였다고 하였다. 의약분업 실시 이후 진료부문에 비해 보건사업 부문의 비중은 54.2%의 보건소에서 증가하였다고 하였다. 의약분업 전후이 분기별 진료실적을 분석한 결과 진료실인원은 의약분업이전과 비교하여 의약분업 이후에 감소하였고, 진료연인원은 군보건소와 보건의료원은 감소하였으며, 시화 구보건소는 감소했다가 점차 증가하고 있다. 조제건수 총진료비 본인부담금 약품구입비는 크게 감소하였다. 보건소 공무원들은 의약분업 실시 이후 진료부문의 기능에 대해서는 57.6%가 축소시켜야 한다고 하였고, 보건소에서 우선적으로 개선해야 할 부분으로는 보건사업내용 개발(62.4%), 인력재배치(51.6%), 사업우선순위 결정(48.4%), 조직개편(36.2%), 진료서비스의 질 향상(32.1%), 예산재배치(23.1%) 순으로 응답하였다. 보건소의 이미지를 개선하기 위해서는 지역주민건강정보관리 강화(60.7%)가 가장 시급하다고 하였으며 홍보를 통한 보건소의 이용 확대(15.8%), 보건소 공무원의 친절(15.3%), 건강상담요원 배치(8.2%) 순이었다. 의약분업 실시 이후 바람직한 보건소 역할 설정을 위하여 보건소 전체 업무 영역에 대해 의약분업 이전과 이후에 상대비중을 매기도록 한 결과 25개 세부영역 중 일반진료 및 응급진료 영역만 모두 상대비중이 높아졌다. 의약분업 이후 보건소가 중점을 두어야 할 우선 순위 5위까지의 업무영역은 순서대로 예방접종, 건강증진, 모자보건, 급만성전염병, 지역보건의료계획 이었다. 향후 보건소가 바람직한 공공보건의료조직으로 기능 및 역할을 재정립하기 위해서는 의약분업이라는 중대한 보건의료환경변화를 계기로 진료부문의 기능은 축소하되 노후시설 장비의 개선, 진료방식의 다양화, 건강정보관리 강화 등 진료서비스의 내용과 질에 있어서는 강화하는 방향으로 나아가야 할 것이다. 또한 인력재배치 및 조직개편과 함께 다양한 보건사업의 개발과 지역특성에 맞는 사업우선순위에 의해 예방접조, 건강증진, 모자보건, 급 만성전염병, 지역보건의료계획 수립, 구강보건, 만성퇴행성질환 등 지역주민의 건강증진 질병예방 기능을 강화하되 지역특성(대도시, 중소도시, 농어촌)에 맞게 예방위주의 건강 증진업무와 환자 진료업무의 비중을 차별화 시키는 방향으로 개선해 나가야 할 것이다.

  • PDF

경주 옥산구곡(玉山九曲)의 위치비정과 경관해석 연구 - 이정엄의 「옥산구곡가」를 중심으로 - (A Study on the Consideration of the Locations of Gyeongju Oksan Gugok and Landscape Interpretation - Focusing on the Arbor of Lee, Jung-Eom's "Oksan Gugok" -)

  • 펑홍쉬;강태호
    • 한국전통조경학회지
    • /
    • 제36권3호
    • /
    • pp.26-36
    • /
    • 2018
  • 본 논문은 경주 옥산구곡의 위치와 경관 해석에 대한 연구이다. 옥산구곡은 회재(晦齋) 이언적(李彦迪)을 향사하는 옥산서원 앞을 흐르는 자계천(紫溪川, 자옥천(紫玉山)) 즉, 옥산천(玉山川)에 설정(設定)된 구곡으로 본 연구에서는 옥산구곡을 대상으로 문헌조사와 디지털 기기 분석을 통해 현장 실측분석을 수행하여 옥산구곡의 위치 및 설정상황을 확인하였다. 특히 Trimble Juno SB GPS로 측정한 구곡의 경위도와 같이 Google Earth Pro 및 지리정보원이 공개한 옥산구곡의 수치지형도를 이용해서 옥산구곡의 정확한 위치를 확정하였다. 문헌연구 및 현장조사를 통하여, 옥산구곡의 위치 비정 및 경관 해석 결과는 다음과 같다. 첫째, 퇴계 이황의 9세손 이야순(李野淳)은 이언적 사후 270년인 1823년 봄에 옥산서원을 방문하였다. 이때 이야순의 제안으로 이언적의 후손 이정엄(李鼎儼), 이정기(李鼎基), 이정병(李鼎秉) 등과 여러 선비들이 함께 옥산구곡을 처음 설정하고 함께 "옥산구곡가"를 창작했다. 이정엄의 "옥산동행기"는 옥산구곡의 설정할 때의 상황을 알려주는 결정적 자료이다. 둘째, 대부분의 구곡원림은 일반적인 시인묵객이 경영한 원림이 아니고 정통 성리학자들이 경영한 원림이다. 이언적과 이황의 후손이 "옥산구곡가"를 함께 창작한 것은 이언적이나 이황이 정통 주자학을 계승했다는 점에 대한 후손들의 자긍심의 한 표현이다. 셋째, 이정엄의 "옥산동행기"에는 "옥산구곡가"의 설곡 과정과 구곡가 창작 과정은 매우 구체적으로 기록되어 있는데, 구곡가의 설곡과정과 그때의 상황이 이처럼 구체적으로 드러난 것은 희귀한 사례라고 할 것이다. 넷째, 기존에 알려진 옥산구곡 제8곡과 제9곡의 위치를 새롭게 비정하였다. 확정된 제8곡 탁영대의 위치정보는 북위 $36^{\circ}01^{\prime}08.60^{{\prime}{\prime}}$,동경 $129^{\circ}09^{\prime}31.20^{{\prime}{\prime}}$이다. 9곡 사자암은 고문헌을 참고하여, 동서의 두 계곡이 모이는 아래쪽 바위로 비정하였다. 그 위치는 북위 $36^{\circ}01^{\prime}19.79^{{\prime}{\prime}}$, 동경 $129^{\circ}09^{\prime}30.26^{{\prime}{\prime}}$이다. 다섯째, 이정엄의 "옥산구곡가"에 나타난 경관요소와 경관현상은 형태요소, 의미요소, 풍토요소로 나누었다. 그 결과 이정엄의 조영관은 산수를 이상향으로 생각하는 점과 자연에 한가하게 노니는 심정과 아울러 무상감을 확인할 수 있었다. 여섯째, 경관요소와 경관현상들의 출현빈도를 살펴본 결과, 이정엄의 구곡가에서'물'과 '산'은 구곡원림을 조영하는 절대적인 요소였다. 따라서 이 구곡가에는 신선사상(神仙思想) 및 은거사상(隱居思想)이 내재되어 있는 것은 물론 산수간의 조화를 통해 자연과 하나가 되는 물아일체의 사상과 성리학적인 수행관을 살필 수 있었다.

한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발 (DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA)

  • 박만배
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1995년도 제27회 학술발표회
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF