• Title/Summary/Keyword: Information granules

Search Result 67, Processing Time 0.025 seconds

Optimization of fuzzy systems based on information granules (정보 Granules 기반 퍼지 시스템의 최적화)

  • Park, Keon-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2567-2569
    • /
    • 2003
  • 본 논문은 비선형 시스템의 퍼지모델을 위해 정보 Granules 기반 퍼지추론 시스템 모델의 최적화를 제시한다. 퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. 제안된 규칙베이스 퍼지모델은 HCM 클러스터링 방법, 컴플렉스 알고리즘 및 퍼지추론 방법을 이용하여 시스템 구조와 파라미터 동정을 수행한다. 두 가지 형태의 퍼지모델 추론 방법은 간략추론, 선형추론에 의해 시행된다. 본 논문에서는 퍼지모델의 입력변수와 퍼지 입력 공간 분할 및 입출력 데이타의 중심값을 구해서 후반부 다항식함수에 의한 정보 Granules 기반 구조 동정과 파라미터 동정을 통해 비선형 시스템을 표현한다. 전반부 파라미터의 동정에는 HCM 클러스터링 방법과 컴플렉스 알고리즘을 사용하고, 후반부는 표준 HCM 클러스터링과 표준 최소자승법을 사용하여 동정한다. 그리고 학습 및 테스트 데이타의 성능견과의 상호균형을 얻기 위한 하중값을 가진 성능지수를 제시함으로써 근사화와 예측성능의 향상을 꾀한다. 제안된 비선형 모델의 성능평가를 통해 그 우수성을 보인다.

  • PDF

A Design of an Improved Linguistic Model based on Information Granules (정보 입자에 근거한 개선된 언어적인 모델의 설계)

  • Han, Yun-Hee;Kwak, Keun-Chang
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.3
    • /
    • pp.76-82
    • /
    • 2010
  • In this paper, we develop Linguistic Model (LM) based on information granules as a systematic approach to generating fuzzy if-then rules from a given input-output data. The LM introduced by Pedrycz is performed by fuzzy information granulation obtained from Context-based Fuzzy Clustering(CFC). This clustering estimates clusters by preserving the homogeneity of the clustered patterns associated with the input and output data. Although the effectiveness of LM has been demonstrated in the previous works, it needs to improve in the sense of performance. Therefore, we focus on the automatic generation of linguistic contexts, addition of bias term, and the transformed form of consequent parameter to improve both approximation and generalization capability of the conventional LM. The experimental results revealed that the improved LM yielded a better performance in comparison with LM and the conventional works for automobile MPG(miles per gallon) predication and Boston housing data.

The Design of Granular-based Radial Basis Function Neural Network by Context-based Clustering (Context-based 클러스터링에 의한 Granular-based RBF NN의 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1230-1237
    • /
    • 2009
  • In this paper, we develop a design methodology of Granular-based Radial Basis Function Neural Networks(GRBFNN) by context-based clustering. In contrast with the plethora of existing approaches, here we promote a development strategy in which a topology of the network is predominantly based upon a collection of information granules formed on a basis of available experimental data. The output space is granulated making use of the K-Means clustering while the input space is clustered with the aid of a so-called context-based fuzzy clustering. The number of information granules produced for each context is adjusted so that we satisfy a certain reconstructability criterion that helps us minimize an error between the original data and the ones resulting from their reconstruction involving prototypes of the clusters and the corresponding membership values. In contrast to "standard" Radial Basis Function neural networks, the output neuron of the network exhibits a certain functional nature as its connections are realized as local linear whose location is determined by the values of the context and the prototypes in the input space. The other parameters of these local functions are subject to further parametric optimization. Numeric examples involve some low dimensional synthetic data and selected data coming from the Machine Learning repository.

Multi-FNN Identification Based on HCM Clustering and Evolutionary Fuzzy Granulation

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.194-202
    • /
    • 2003
  • In this paper, we introduce a category of Multi-FNN (Fuzzy-Neural Networks) models, analyze the underlying architectures and propose a comprehensive identification framework. The proposed Multi-FNNs dwell on a concept of fuzzy rule-based FNNs based on HCM clustering and evolutionary fuzzy granulation, and exploit linear inference being treated as a generic inference mechanism. By this nature, this FNN model is geared toward capturing relationships between information granules known as fuzzy sets. The form of the information granules themselves (in particular their distribution and a type of membership function) becomes an important design feature of the FNN model contributing to its structural as well as parametric optimization. The identification environment uses clustering techniques (Hard C - Means, HCM) and exploits genetic optimization as a vehicle of global optimization. The global optimization is augmented by more refined gradient-based learning mechanisms such as standard back-propagation. The HCM algorithm, whose role is to carry out preprocessing of the process data for system modeling, is utilized to determine the structure of Multi-FNNs. The detailed parameters of the Multi-FNN (such as apexes of membership functions, learning rates and momentum coefficients) are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. To evaluate the performance of the proposed model, two numeric data sets are experimented with. One is the numerical data coming from a description of a certain nonlinear function and the other is NOx emission process data from a gas turbine power plant.

Design of hetero-hybridized feed-forward neural networks with information granules using evolutionary algorithm

  • Roh Seok-Beom;Oh Sung-Kwun;Ahn Tae-Chon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.483-487
    • /
    • 2005
  • We introduce a new architecture of hetero-hybridized feed-forward neural networks composed of fuzzy set-based polynomial neural networks (FSPNN) and polynomial neural networks (PM) that are based on a genetically optimized multi-layer perceptron and develop their comprehensive design methodology involving mechanisms of genetic optimization and Information Granulation. The construction of Information Granulation based HFSPNN (IG-HFSPNN) exploits fundamental technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks, and genetic algorithms(GAs) and Information Granulation. The architecture of the resulting genetically optimized Information Granulation based HFSPNN (namely IG-gHFSPNN) results from a synergistic usage of the hybrid system generated by combining new fuzzy set based polynomial neurons (FPNs)-based Fuzzy Neural Networks(PM) with polynomial neurons (PNs)-based Polynomial Neural Networks(PM). The design of the conventional genetically optimized HFPNN exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being tuned by using Genetie Algorithms throughout the overall development process. However, the new proposed IG-HFSPNN adopts a new method called as Information Granulation to deal with Information Granules which are included in the real system, and a new type of fuzzy polynomial neuron called as fuzzy set based polynomial neuron. The performance of the IG-gHFPNN is quantified through experimentation.

  • PDF

Genetic Design of Granular-oriented Radial Basis Function Neural Network Based on Information Proximity (정보 유사성 기반 입자화 중심 RBF NN의 진화론적 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.436-444
    • /
    • 2010
  • In this study, we introduce and discuss a concept of a granular-oriented radial basis function neural networks (GRBF NNs). In contrast to the typical architectures encountered in radial basis function neural networks(RBF NNs), our main objective is to develop a design strategy of GRBF NNs as follows : (a) The architecture of the network is fully reflective of the structure encountered in the training data which are granulated with the aid of clustering techniques. More specifically, the output space is granulated with use of K-Means clustering while the information granules in the multidimensional input space are formed by using a so-called context-based Fuzzy C-Means which takes into account the structure being already formed in the output space, (b) The innovative development facet of the network involves a dynamic reduction of dimensionality of the input space in which the information granules are formed in the subspace of the overall input space which is formed by selecting a suitable subset of input variables so that the this subspace retains the structure of the entire space. As this search is of combinatorial character, we use the technique of genetic optimization to determine the optimal input subspaces. A series of numeric studies exploiting some nonlinear process data and a dataset coming from the machine learning repository provide a detailed insight into the nature of the algorithm and its parameters as well as offer some comparative analysis.

Design of Information Granules based Fuzzy Polynomial Neural Networks Using Symbolic Encoding of Genetic Algorithms and Its Application to Software Systems (유전자 알고리즘의 기호 코딩을 이용한 정보 입자기반 터지 다항식 뉴럴네트워크의 설계와 소프트웨어 공정으로의 응용)

  • Lee, In-Tae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2091-2092
    • /
    • 2006
  • 본 논문은 소프트웨어 공정에 대하여 유전자 알고리즘의 기호코딩을 이용한 정보입자 기반 퍼지 다항식 뉴럴 네트워크 (Information Granules based genetic Fuzzy Polynomial Neural Networks ;IG based gFPNN)의 모델 설계를 제안한다. 기존 퍼지 다항식 뉴럴네트워크의 구조 최적화를 위해 이진코딩을 사용하였다. 그러나 이진코딩에서 스트링의 길이가 길면 길수록 인접한 두 수 사이에 발생하는 급격한 비트 차이라는 해밍 절벽이 발생하였다. 이에 제안된 모델에서는 해밍절벽의 문제를 해결하기 위해 기호코딩을 사용하였다. 제안된 모델의 전반부 구조와 후반부 구조는 기존 모델에 구성을 그대로 사용한다. 실험적 예제를 통하여 제안된 모델의 근사화 능력과 일반화 능력이 우수함을 보인다.

  • PDF

Logic-based Fuzzy Neural Networks based on Fuzzy Granulation

  • Kwak, Keun-Chang;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1510-1515
    • /
    • 2005
  • This paper is concerned with a Logic-based Fuzzy Neural Networks (LFNN) with the aid of fuzzy granulation. As the underlying design tool guiding the development of the proposed LFNN, we concentrate on the context-based fuzzy clustering which builds information granules in the form of linguistic contexts as well as OR fuzzy neuron which is logic-driven processing unit realizing the composition operations of T-norm and S-norm. The design process comprises several main phases such as (a) defining context fuzzy sets in the output space, (b) completing context-based fuzzy clustering in each context, (c) aggregating OR fuzzy neuron into linguistic models, and (c) optimizing connections linking information granules and fuzzy neurons in the input and output spaces. The experimental examples are tested through two-dimensional nonlinear function. The obtained results reveal that the proposed model yields better performance in comparison with conventional linguistic model and other approaches.

  • PDF

Fuzzy Partitioning with Fuzzy Equalization Given Two Points and Partition Cardinality (두 점과 분할 카디날리티가 주어진 퍼지 균등화조건을 갖는 퍼지분할)

  • Kim, Kyeong-Taek;Kim, Chong-Su;Kang, Sung-Yeol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.4
    • /
    • pp.140-145
    • /
    • 2008
  • Fuzzy partition is a conceptual vehicle that encapsulates data into information granules. Fuzzy equalization concerns a process of building information granules that are semantically and experimentally meaningful. A few algorithms generating fuzzy partitions with fuzzy equalization have been suggested. Simulations and experiments have showed that fuzzy partition representing more characteristics of given input distribution usually produces meaningful results. In this paper, given two points and cardinality of fuzzy partition, we prove that it is not true that there always exists a fuzzy partition with fuzzy equalization in which two of points having peaks fall on the given two points. Then, we establish an algorithm that minimizes the maximum distance between given two points and adjacent points having peaks in the partition. A numerical example is presented to show the validity of the suggested algorithm.

Evolutionary Optimized Fuzzy Set-based Polynomial Neural Networks Based on Classified Information Granules

  • Oh, Sung-Kwun;Roh, Seok-Beom;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2888-2890
    • /
    • 2005
  • In this paper, we introduce a new structure of fuzzy-neural networks Fuzzy Set-based Polynomial Neural Networks (FSPNN). The two underlying design mechanisms of such networks involve genetic optimization and information granulation. The resulting constructs are Fuzzy Polynomial Neural Networks (FPNN) with fuzzy set-based polynomial neurons (FSPNs) regarded as their generic processing elements. First, we introduce a comprehensive design methodology (viz. a genetic optimization using Genetic Algorithms) to determine the optimal structure of the FSPNNs. This methodology hinges on the extended Group Method of Data Handling (GMDH) and fuzzy set-based rules. It concerns FSPNN-related parameters such as the number of input variables, the order of the polynomial, the number of membership functions, and a collection of a specific subset of input variables realized through the mechanism of genetic optimization. Second, the fuzzy rules used in the networks exploit the notion of information granules defined over systems variables and formed through the process of information granulation. This granulation is realized with the aid of the hard C- Means clustering (HCM). The performance of the network is quantified through experimentation in which we use a number of modeling benchmarks already experimented with in the realm of fuzzy or neurofuzzy modeling.

  • PDF