• 제목/요약/키워드: Information device

검색결과 9,041건 처리시간 0.038초

딥러닝 기반 영상처리 기법 및 표준 운동 프로그램을 활용한 비대면 온라인 홈트레이닝 어플리케이션 연구 (Non-face-to-face online home training application study using deep learning-based image processing technique and standard exercise program)

  • 신윤지;이현주;김준희;권다영;이선애;추윤진;박지혜;정자현;이형석;김준호
    • 문화기술의 융합
    • /
    • 제7권3호
    • /
    • pp.577-582
    • /
    • 2021
  • 최근 AR, VR 및 스마트 디바이스 기술의 발전에 따라 피트니스 산업에서도 비대면 환경을 기반으로 한 서비스 수요가 증가하고 있다. 비대면 온라인 홈트레이닝 서비스는 기존의 오프라인 서비스에 비해 시간과 장소의 제약이 없다는 장점이 있으나 운동 기구의 부재 및 사용자의 정확한 운동 자세 유지여부, 운동량의 측정이 어려운 단점이 존재한다. 본 연구에서는 이러한 단점을 보완할 수 있는 표준 운동 프로그램을 개발하고 딥러닝 기반 신체 자세 추정 영상처리를 통하여 새로운 비대면 홈트레이닝 어플리케이션 알고리즘을 제안한다. 본 연구의 알고리즘 기반 어플리케이션을 활용한다면 표준 운동 프로그램 영상의 트레이너를 사용자가 직접 보고 따라하면서 사용자 스스로 자세를 교정하며 정확한 운동이 가능하다. 나아가 본 연구의 알고리즘을 용도에 맞게 커스터마이징 한다면 공연, 영화, 동아리 활동, 컨퍼런스 분야로의 적용도 가능할 것이다.

딥러닝 기반 불량노면 객체 인식 모델 개발 (Development of an abnormal road object recognition model based on deep learning)

  • 최미형;우제승;홍순기;박준모
    • 융합신호처리학회논문지
    • /
    • 제22권4호
    • /
    • pp.149-155
    • /
    • 2021
  • 본 연구에서는 전동 이동기기를 이용하는 교통약자의 이동을 제한하는 노면 불량 요소를 딥러닝을 이용해 자동 검출하는 불량 노면객체 인식모델을 개발하고자 한다. 이를 위하여 부산시 관내 5개 지역에서 실제 전동 이동 보조 장치가 이동할 것으로 예상되는 보행로, 주행로를 대상으로 하여 노면 정보를 수집하였으며 이때 도로 정보 수집은 데이터 수집을 보다 용이하게 하기 위하여 소형 차량을 이용하였다. 데이터는 노면과 주변을 그 주변을 구성하는 객체로 구분하여 영상을 수집하였다. 수집된 데이터로부터 교통약자의 이동을 저해하는 정도에 따라 분류하여 보도블록의 파손등급 검출과 같은 일련의 인식 항목을 정의하였고, YOLOv5 딥러닝 알고리즘을 해당 데이터에 적용하여 실시간으로 객체를 인식하는 불량노면 객체 인식 딥러닝 모델을 구현하였다. 연구의 최종단계에서 실제 주행을 통해 객체 단위로 분리 수집된 영상 데이터의 가공, 정제 및 어노테이션 과정을 수행한 후 모델 학습과 검증을 거쳐 불량노면객체를 자동으로 검출하는 딥러닝 모델의 성능 검증 과정을 진행하였다.

주기성을 갖는 입출력 데이터의 연관성 분석을 통한 회귀 모델 학습 방법 (Learning Method for Regression Model by Analysis of Relationship Between Input and Output Data with Periodicity)

  • 김혜진;박예슬;이정원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권7호
    • /
    • pp.299-306
    • /
    • 2022
  • 최근 로봇이나 설비, 회로 등에 센서 내장이 보편화 되고, 측정된 센서 데이터를 학습하여 기기의 고장을 진단하기 위한 연구가 활발하게 수행되고 있다. 이러한 고장 진단 연구는 고장 상황이나 종류를 예측하기 위한 분류(Classification) 모델 개발과 정량적으로 고장 상황을 예측하기 위한 회귀(Regression) 모델 개발로 구분된다. 분류 모델의 경우, 단순히 고장이나 결함의 유무(Class)를 확인하는 반면, 회귀 모델은 무수히 많은 수치 중에 하나의 값(Value)을 예측해야 하므로 학습 난이도가 더 높다. 즉, 입력과 출력을 대응시켜 고장을 예측을 할 때, 유사한 입력값이 동일한 출력을 낸다고 결정하기 어려운 불규칙한 상황이 다수 존재하기 때문이다. 따라서 본 논문에서는 주기성을 지닌 입출력 데이터에 초점을 맞추어, 입출력 관계를 분석하고, 슬라이딩 윈도우 기반으로 입력 데이터를 패턴화 하여 입출력 데이터 간의 규칙성을 확보하도록 한다. 제안하는 방법을 적용하기 위해, 본 연구에서는 MMC(Modular Multilevel Converter) 회로 시스템으로부터 주기성을 지닌 전류, 온도 데이터를 수집하여 ANN을 이용하여 학습을 진행하였다. 실험 결과, 한 주기의 2% 이상의 윈도우를 적용하였을 때, 적합도 97% 이상의 성능이 확보될 수 있음을 확인하였다.

아두이노를 활용한 중력 가속도 측정과 관련된 튜토리얼 및 교육적 활용 방안 (Development of Tutorial for Measuring Gravity Acceleration Using Arduino and Its Educational Application)

  • 김형욱;문성윤
    • 한국콘텐츠학회논문지
    • /
    • 제22권6호
    • /
    • pp.69-77
    • /
    • 2022
  • MBL을 통한 물리 실험은 학생들이 실험 결과를 바로 확인하고 쉽게 실험을 수행할 수 있어 예전부터 많은 학교에서 활용해 왔다. 하지만, 장치의 원리를 모르고 실험을 수행하거나, 단순히 도출된 데이터에만 집중하는 것이 MBL 실험의 문제점으로 꾸준히 제기되어 왔다. 이러한 문제점을 보완하기 위해, 아두이노를 활용하여 MBL 실험에서 많이 사용되는 피켓펜스의 방법으로 중력 가속도를 측정하고 실제 중력 가속도 값과의 비교를 통해 오차율을 계산했으며, 본 튜토리얼의 교육적 활용에 대한 논의를 해보았다. 실험 결과, 실험으로 구한 중력 가속도 값과 실제 중력 가속도 값의 오차율은 1% 내외로 비교적 정확한 측정이 가능한 것으로 나타났으며, 실험값의 표본평균이 95% 신뢰구간 안에 포함되는 것으로 나타나 유의미한 실험이라는 결론을 내릴 수 있었다. 또한, MBL이 가진 구조적인 단점을 보완할 수 있는 점, 물리와 수학의 상호작용을 고려할 수 있는 점, STEAM 교육에서 정보 교과와의 융합이 가능한 점 그리고 장비 구비비용이 저렴한 점을 통해 측정실험의 교육적 활용 가능성을 보여주었다. 본 자료를 토대로 아두이노를 활용한 물리 실험이 과학영재 교육에서 더욱 활성화될 수 있도록 기대하는 바이다.

Kinect Sensor 기반의 개인 맞춤형 운동 처방 시스템 개발 (Development of Personalized Exercise Prescription System based on Kinect Sensor)

  • 우현지;유미;홍철운;권대규
    • 한국콘텐츠학회논문지
    • /
    • 제22권3호
    • /
    • pp.593-605
    • /
    • 2022
  • 본 연구는 Kinect Sensor 기반의 개인 맞춤형 운동 처방 시스템을 개발하고, 개발 시스템의 사용성을 평가하는 것이다. 개발 시스템을 개인 맞춤형 운동 처방 시스템을 모션캡쳐 도구로서 이용할 수 있을지에 대한 가능성 검증을 위해서 스마트 거울 시스템에 부착된 키넥트 센서(Kinect sensor)에서 측정된 인체 움직임 데이터와 적외선 모션캡쳐 장비에서 측정된 인체 움직임 데이터를 비교하여 타당성과 신뢰성을 분석하였다. 타당성 검증 결과 상관계수 r=0.871~0.919로 높은 양의 상관성을 보였고, 예측가능정도가 88%로 높게 나타났다. 신뢰성 검증 결과 r=0.743~0.916 높은 양의 상관성을 보였고, 반복 측정에 대한 일관성도 ICC=0.937로 매우 높게 나타났다. 결론적으로 본 연구에서 개발한 키넥트 센서기반의 운동 처방 시스템에서 인간 골격에 대한 특징 벡터를 통한 관절의 가동범위 평가 및 자세측정평가가 운동 처방을 제공하는데 있어서 하나의 기준이 될 수 있다는 가능성을 보여주었다. 향후 병원, 임상시험센터, 스포츠센터 등의 운동처방사 혹은 물리치료사, 퍼스널 트레이너들에게 전문성 제고에 도움을 줄 수 있을 것으로 사료된다.

반응형 웹 기반 선박 보조기기 및 배관 상태 진단 모니터링 시스템 구현 (Implementation of Responsive Web-based Vessel Auxiliary Equipment and Pipe Condition Diagnosis Monitoring System)

  • 박순호;최우근;최경열;권상혁
    • 한국항해항만학회지
    • /
    • 제46권6호
    • /
    • pp.562-569
    • /
    • 2022
  • 기존 운항선박에 적용되어 있는 알람 모니터링 기술은 온도, 압력 등의 데이터 항목을 AMS(Alarm Monitoring System)으로 관리하고 해당 센싱 데이터가 정상 수준 범위를 초과할 경우만 선원에게 알람을 제공한다. 또한 기존 선박의 정비는 PMS(Planned Maintenance System)를 따른다. 이는 장비로부터 측정된 센싱 데이터가 설정범위 이상으로 측정되어 이에 따른 알람을 통해 정비하거나, 대상 기기의 고장 유무에 관계없이 일정 시간 사용 후 해당 부품을 사전에 교체하는 방식으로 운영되고 있다. 하지만 선박 기관운영의 신뢰성과 운항 안전성을 확보하기 위해서는 실시간 상태 모니터링 데이터 기반의 사전적 진단 및 예측이 가능해야 한다. 그러기 위해서 실선 데이터를 종합적으로측정하여 데이터베이스화 하고 이를 선박의 보조기기와 배관의 상태기반 예지보전을 위한 상태 진단 모니터링 시스템을 구현하고자 한다. 특히 반응형 웹 기반으로 선박의 보조기기와 배관 상태 정보를 관리할 수 있도록 하였으며, 선내 개인용 컴퓨터(Personal Computer, PC)에서 보는 용도뿐만 아니라 스마트폰 등 다양한 모바일 기기의 접근 및 활용이 가능하도록 화면과 해상도에 맞춰 최적화된 상태 관리가 가능하도록 하여 업데이트 비용이 적게 들며, 관리 방법도 쉽다. 본 논문에서는 자율운항선박 핵심 기술인 상태기반정비(Condition Based Management, CBM) 기술력을 확보하기 위해 선박의 보조기기 중 펌프와 청정기, 그리고 배관 중 해수 및 스팀 배관의 상태 진단 모니터링을 통해 이상 현상을 파악하고, 이를 통해 융합 분석할 수 있도록 선박 보조기기 및 배관의 성능 진단 및 고장 예측에 활용하여 예방정비 의사결정을 지원하고자 한다.

군집 로봇의 임무 검증 지원을 위한 디지털 트윈 기반 통신 최적화 기법 (Digital Twin-Based Communication Optimization Method for Mission Validation of Swarm Robot)

  • 김관혁;김한진;권준형;하범수;허석행;구지훈;손호정;김원태
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권1호
    • /
    • pp.9-16
    • /
    • 2023
  • 로봇은 군사 분야로까지 활용 범위를 넓히며 다가올 미래전에서 감시경계, 적군 탐지 등 중요한 임무를 맡게 될 것으로 전망된다. 군집 로봇은 다수라는 장점으로 단일 로봇이 수행하기 어렵거나 오랜 시간이 소요된 임무를 보다 효율적으로 수행할 수 있다. 상호 간 인지 및 협업이 필수인 군집 로봇은 방대한 데이터를 주고 받으며, 이로 인해 SW의 검증이 점점 더 어려워지고 있다. 임무 검증의 신뢰성을 높이기 위해 사용하는 Hardware-in-the-loop simulation은 복잡한 군집 로봇의 SW 검증을 가능하게 하나, HILS 장치와 시뮬레이터 간 주고 받는 검증 데이터의 양이 검증 대상 시스템 수에 따라 기하급수적으로 증가하여 통신 과부하가 발생할 수 있다. 본 논문에서는 군집 로봇의 임무 검증에서 발생하는 통신 과부하 문제를 해소하기 위해 디지털 트윈 기반의 통신 최적화 기법을 제안한다. 제안하는 Digital Twin based Multi HILS Framework 하에서 Network DT은 Network Controller 알고리즘을 통해 임무 시나리오에 따라 각 로봇에게 네트워크 자원을 효율적으로 할당할 수 있으며, 군집에 참여하는 개별 로봇들이 요구하는 Sensor Generation Rate를 모두 만족시킬 수 있음을 확인하였다. 또한 데이터 전송에 대한 실험 결과 패킷 손실 비율을 기존 15.7%에서 약 0.2%로 감소시킬 수 있었다.

호흡기 및 비말감염 환자 전용 흉부 X-선 검사실의 바이러스 차단제 분석에 관한 연구 (A Study on the Analysis of Virus Barrier Materials in a Chest X-ray Laboratory to Respiratory and Droplet Infections Only Patients)

  • 김현주;이준호;최관용
    • 한국방사선학회논문지
    • /
    • 제16권2호
    • /
    • pp.169-175
    • /
    • 2022
  • 본 연구는 호흡기 또는 비말 전파 바이러스 감염자의 흉부 X-선 검사 시 바이러스 차단설비를 갖춘 촬영실을 구상해 보았고, 설계과정에서 바이러스를 차단역할을 하는 검증된 차단제 중 X-선의 출력 및 화질의 저하가 가장 적은 재질과 두께를 찾기 위해 실험해 보았다. 그 결과 아크릴 1 cm 적용 시 X-선 출력은 차단제 없을 시 보다 약 3.27 % 감소 되었고, SNR은 40.7, CNR은 30.9로 분석되었고 SSIM 지수 분석결과 0.891로 분석되어 원본 영상과 비교하여 가장 유사한 영상으로 구현되는 것으로 분석되었다. 연구방법에서 적용한 차단제는 식약처 허가 등을 받은 제품을 사용했다는 점에서 객관성이 있었으며 향후 호흡기 관련 바이러스 발생 시 감염환자의 진단 및 치료 시설 설비 시 본 연구결과는 유용한 정보를 제공할 것으로 사료된다.

GPR 기반 콘크리트 슬래브 시공 두께 검측 기법 개발 (Development of Thickness Measurement Method From Concrete Slab Using Ground Penetrating Radar)

  • 이태민;강민주;최민서;정선응;최하진
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권3호
    • /
    • pp.39-47
    • /
    • 2022
  • 국내의 공동주택 보급률 증가에 따라 층간소음으로 인한 문제가 증가하고 있다. 이를 예방하기 위하여 바닥 충격음 차단 구조에 대한 수요가 높아지고 있으며 해당 구조에 대한 성능 인증이 이뤄지고 있지만 소음 차단 성능이 현장에서는 재현되지 않는다는 문제점이 있다. 해당 구조가 제 성능을 발휘하기 위해서는 일정 두께 이상의 마감 모르타르 타설이 필요하며, 해당 구조의 시공 적정성 판정을 위하여 GPR을 이용한 두께 측정 실험을 진행하였다. 본 연구에서 개발한 두께 측정 알고리즘은 측정된 데이터를 기반으로 상대유전율을 설정할 수 있어 정확한 두께 값을 측정할 수 있다. 네 종류의 바닥 충격음 차단 인증 구조에서 GPR 두께 측정 실험을 진행하였으며, GPR 데이터와 천공 측정 데이터 간 평균 오차는 1.95mm로 나타났다. 또한 마감재 유무가 측정값에 미치는 영향을 조사하기 위하여 총 3가지 종류의 마감재를 배치하고 실험을 진행으며, 평균 오차는 1.70mm로 나타났다. 추가적으로 장비의 샘플링 오차, 개발 알고리즘 변수, 천공 오차등을 종합적으로 고려하였을 때, GPR 계측 및 제안 알고리즘은 매우 높은 정확도로 슬래브 마감 모르타르의 두께 측정에 적용할 수 있음을 확인하였다.

엣지 시스템을 위한 LSTM 기반 화재 및 악취 예측 모델 (LSTM-based Fire and Odor Prediction Model for Edge System)

  • 윤주상;이태진
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권2호
    • /
    • pp.67-72
    • /
    • 2022
  • 최근 인공지능을 활용한 다양한 지능형 응용서비스 개발이 활발히 진행 중이다. 특히, 제조 산업 현장에서는 인공지능 기반 실시간 예측서비스 연구가 활발히 진행 중이며 이중 화재 및 악취를 감지·예측할 수 있는 인공지능 서비스에 대한 요구가 매우 높다. 하지만 기존 감지·예측시스템은 화재 및 악취 발생 예측이 아닌 발생 후 감지 서비스가 대부분이다. 이는 인공지능 기반 예측서비스 기술이 적용되어 있지 않기 때문이다. 또한, 화재 예측 및 악취 감지·예측서비스는 초저지연 특징을 가진 서비스이다. 따라서 초저지연 예측서비스를 제공하기 위해 엣지 컴퓨팅 기술이 인공지능 모델과 결합되어 클라우드에 비해 빠른 추론 결과를 현장에 빠르게 적용할 수 있도록 개발 중이다. 따라서 본 논문에서는 제조 산업 현장에서 가장 많이 요구되는 화재 예측 및 악취 감지·예측에 사용할 수 있는 LSTM 알고리즘 기반 학습모델을 제안한다. 또한, 제안하는 학습모델은 엣지 다바이스에 구현이 가능하도록 설계하였으며 사물인터넷 단말로부터 실시간 센서데이터를 수신하고 이 데이터를 추론 모델에 적용하여 화재 및 악취 상태를 실시간으로 예측할 수 있도록 제안한다. 제안된 모델은 3가지 성능 지표를 통해 학습모델의 예측 정확도를 평가하였으며 평가 결과는 평균 90% 이상 성능을 보였다.