• 제목/요약/키워드: Information Services

검색결과 18,297건 처리시간 0.048초

시계열 군집분석을 통한 디지털 음원의 순위 변화 패턴 분류 (Derivation of Digital Music's Ranking Change Through Time Series Clustering)

  • 유인진;박도형
    • 지능정보연구
    • /
    • 제26권3호
    • /
    • pp.171-191
    • /
    • 2020
  • 본 연구는 현대 사회에서 가장 가치 있는 문화자산이자 한류의 흐름에서 특히 중요한 위치를 차지하는 디지털 음악에 초점을 두었다. 디지털 음악에 대하여 공신력 있는 음원 차트인 '가온 차트'에 진입한 음원들의 73주간 순위 변화를 수집하였으며 유사한 특징을 가지는 패턴들로 분류하였다. 이후 각 순위 변화 패턴으로부터 주목할 만한 특징에 대한 설명적 분석을 수행하였다. 구체적으로 음원에 대한 신뢰도 이슈가 발생하기 이전 기간의 국내 발매된 디지털 음원들로 한정하여 시점을 일치시킨 후 시계열 군집분석을 통해 패턴을 도출하고자 하였다. 데이터 수집과 전처리를 통하여 742건의 중복되지 않는 음원들을 확보하였고, 시계열 순위 변화에 대한 시계열 군집분석 결과 16개의 패턴들이 도출되었다. 이후 도출된 패턴들을 기반으로 '스테디셀러'와 '원 히트 원더'의 두 가지 유형의 대표적인 패턴을 확인하였다. 나아가 두 패턴에 대하여 차트 내에서 음원의 생존 기간과 음원 순위에 관점에서 다섯 가지의 세분화된 패턴으로 분류하였다. 각 패턴들이 가지는 중요한 특징들은 다음과 같다. 원 히트 원더형 패턴에서 아티스트의 슈퍼스타 효과와 편승효과가 강하게 나타났으며, 소비자들의 디지털 음원 선택에 강한 영향을 미친다는 것을 확인하였다. 나아가 스테디셀러형 패턴을 통해서 매우 오랜시간 소비자들의 선택을 받는 음원들을 확인하였고, 소비자의 니즈를 관통하며 가장 많은 선택을 받는 음원들이 오히려 원 히트 원더형 패턴이 아니라 스테디셀러: 중기 패턴에 포진하고 있음을 확인하였다. 특히 주목할 만한 점은 스테디셀러형 패턴을 통해 기존의 패턴과는 상반되는 '차트 역주행' 현상을 확인했다는 것이다. 본 연구는 디지털 음원을 중심으로 상대적으로 소외되었던 분야인 시간의 흐름에 따른 음원의 순위 변화에 초점을 두었고, 음원의 흥행과 순위를 예측하는 것이 아니라 순위 변화의 패턴을 세분화함으로써 음원 연구에 대한 새로운 접근을 시도하였다는 점에서 의의가 있다.

주가지수 방향성 예측을 위한 주제지향 감성사전 구축 방안 (Predicting the Direction of the Stock Index by Using a Domain-Specific Sentiment Dictionary)

  • 유은지;김유신;김남규;정승렬
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.95-110
    • /
    • 2013
  • 최근 다양한 소셜미디어를 통해 생성되는 비정형 데이터의 양은 빠른 속도로 증가하고 있으며, 이를 저장, 가공, 분석하기 위한 도구의 개발도 이에 맞추어 활발하게 이루어지고 있다. 이러한 환경에서 다양한 분석도구를 통해 텍스트 데이터를 분석함으로써, 기존의 정형 데이터 분석을 통해 해결하지 못했던 이슈들을 해결하기 위한 많은 시도가 이루어지고 있다. 특히 트위터나 페이스북을 통해 실시간에 근접하게 생산되는 글들과 수많은 인터넷 사이트에 게시되는 다양한 주제의 글들은, 방대한 양의 텍스트 분석을 통해 많은 사람들의 의견을 추출하고 이를 통해 향후 수익 창출에 기여할 수 있는 새로운 통찰을 발굴하기 위한 움직임에 동기를 부여하고 있다. 뉴스 데이터에 대한 오피니언 마이닝을 통해 주가지수 등락 예측 모델을 제안한 최근의 연구는 이러한 시도의 대표적 예라고 할 수 있다. 우리가 여러 매체를 통해 매일 접하는 뉴스 역시 대표적인 비정형 데이터 중의 하나이다. 이러한 비정형 텍스트 데이터를 분석하는 오피니언 마이닝 또는 감성 분석은 제품, 서비스, 조직, 이슈, 그리고 이들의 여러 속성에 대한 사람들의 의견, 감성, 평가, 태도, 감정 등을 분석하는 일련의 과정을 의미한다. 이러한 오피니언 마이닝을 다루는 많은 연구는, 각 어휘별로 긍정/부정의 극성을 규정해 놓은 감성사전을 사용하며, 한 문장 또는 문서에 나타난 어휘들의 극성 분포에 따라 해당 문장 또는 문서의 극성을 산출하는 방식을 채택한다. 하지만 특정 어휘의 극성은 한 가지로 고유하게 정해져 있지 않으며, 분석의 목적에 따라 그 극성이 상이하게 나타날 수도 있다. 본 연구는 특정 어휘의 극성은 한 가지로 고유하게 정해져 있지 않으며, 분석의 목적에 따라 그 극성이 상이하게 나타날 수도 있다는 인식에서 출발한다. 동일한 어휘의 극성이 해석하는 사람의 입장에 따라 또는 분석 목적에 따라 서로 상이하게 해석되는 현상은 지금까지 다루어지지 않은 어려운 이슈로 알려져 있다. 구체적으로는 주가지수의 상승이라는 한정된 주제에 대해 각 관련 어휘가 갖는 극성을 판별하여 주가지수 상승 예측을 위한 감성사전을 구축하고, 이를 기반으로 한 뉴스 분석을 통해 주가지수의 상승을 예측한 결과를 보이고자 한다.

쇼핑 웹사이트 탐색 유형과 방문 패턴 분석 (Analysis of shopping website visit types and shopping pattern)

  • 최경빈;남기환
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.85-107
    • /
    • 2019
  • 온라인 소비자는 쇼핑 웹사이트에서 특정 제품군이나 브랜드에 속한 제품들을 둘러보고 구매를 진행할 수 있고, 혹은 단순히 넓은 범위의 탐색 반경을 보이며 여러 페이지들을 돌아보다 구매를 진행하지 않고 이탈할 수 있다. 이러한 온라인 소비자의 행동과 구매에 관련된 연구는 꾸준히 진행되어왔으며, 실무에서도 소비자들의 행동 데이터를 바탕으로 한 서비스 및 어플리케이션이 개발되고 있다. 최근에는 빅데이터 기술의 발달로 소비자 개인 단위의 맞춤화 전략 및 추천 시스템이 활용되고 있으며 사용자의 쇼핑 경험을 최적화하기 위한 시도가 진행되고 있다. 하지만 이와 같은 시도에도 온라인 소비자가 실제로 웹사이트를 방문해 제품 구매 단계까지 전환될 확률은 매우 낮은 실정이다. 이는 온라인 소비자들이 단지 제품 구매를 위해 웹사이트를 방문하는 것이 아니라 그들의 쇼핑 동기 및 목적에 따라 웹사이트를 다르게 활용하고 탐색하기 때문이다. 따라서 단지 구매가 진행되는 방문 외에도 다양한 방문 형태를 분석하는 것은 온라인 소비자들의 행동을 이해하는데 중요하다고 할 수 있다. 이러한 관점에서 본 연구에서는 온라인 소비자의 탐색 행동의 다양성과 복잡성을 설명하기 위해 실제 E-commerce 기업의 클릭스트림 데이터를 기반으로 세션 단위의 클러스터링 분석을 진행해 탐색 행동을 유형화하였다. 이를 통해 각 유형별로 상세 단위의 탐색 행동과 구매 여부가 차이가 있음을 확인하였다. 또한 소비자 개인이 여러 방문에 걸친 일련의 탐색 유형에 대한 패턴을 분석하기 위해 순차 패턴 마이닝 기법을 활용하였으며, 같은 기간 내에 제품 구매까지 완료한 소비자와 구매를 진행하지 않은 채 방문만 진행한 소비자들의 탐색패턴에 대한 차이를 확인할 수 있었다. 본 연구의 시사점은 대규모의 클릭스트림 데이터를 활용해 온라인 소비자의 탐색 유형을 분석하고 이에 대한 패턴을 분석해 구매 과정 상의 행동을 데이터 기반으로 설명하였다는 점에 있다. 또한 온라인 소매 기업은 다양한 형태의 탐색 유형에 맞는 마케팅 전략 및 추천을 통해 구매 전환 개선을 시도할 수 있으며, 소비자의 탐색 패턴의 변화를 통해 전략의 효과를 평가할 수 있을 것이다.

텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로 (A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github)

  • 정지선;김동성;이홍주;김종우
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.1-19
    • /
    • 2019
  • 제4차 산업혁명을 이끄는 주요 원동력 중 하나인 인공지능 기술은 이미지와 음성 인식 등 여러 분야에서 사람과 유사하거나 더 뛰어난 능력을 보이며, 사회 전반에 미치게 될 다양한 영향력으로 인하여 높은 주목을 받고 있다. 특히, 인공지능 기술은 의료, 금융, 제조, 서비스, 교육 등 광범위한 분야에서 활용이 가능하기 때문에, 현재의 기술 동향을 파악하고 발전 방향을 분석하기 위한 노력들 또한 활발히 이루어지고 있다. 한편, 이러한 인공지능 기술의 급속한 발전 배경에는 학습, 추론, 인식 등의 복잡한 인공지능 알고리즘을 개발할 수 있는 주요 플랫폼들이 오픈 소스로 공개되면서, 이를 활용한 기술과 서비스들의 개발이 비약적으로 증가하고 있는 것이 주요 요인 중 하나로 확인된다. 또한, 주요 글로벌 기업들이 개발한 자연어 인식, 음성 인식, 이미지 인식 기능 등의 인공지능 소프트웨어들이 오픈 소스 소프트웨어(OSS: Open Sources Software)로 무료로 공개되면서 기술확산에 크게 기여하고 있다. 이에 따라, 본 연구에서는 온라인상에서 다수의 협업을 통하여 개발이 이루어지고 있는 인공지능과 관련된 주요 오픈 소스 소프트웨어 프로젝트들을 분석하여, 인공지능 기술 개발 현황에 대한 보다 실질적인 동향을 파악하고자 한다. 이를 위하여 깃허브(Github) 상에서 2000년부터 2018년 7월까지 생성된 인공지능과 관련된 주요 프로젝트들의 목록을 검색 및 수집하였으며, 수집 된 프로젝트들의 특징과 기술 분야를 의미하는 토픽 정보들을 대상으로 텍스트 마이닝 기법을 적용하여 주요 기술들의 개발 동향을 연도별로 상세하게 확인하였다. 분석 결과, 인공지능과 관련된 오픈 소스 소프트웨어들은 2016년을 기준으로 급격하게 증가하는 추세이며, 토픽들의 관계 분석을 통하여 주요 기술 동향이 '알고리즘', '프로그래밍 언어', '응용분야', '개발 도구'의 범주로 구분하는 것이 가능함을 확인하였다. 이러한 분석 결과를 바탕으로, 향후 다양한 분야에서의 활용을 위해 개발되고 있는 인공지능 관련 기술들을 보다 상세하게 구분하여 확인하는 것이 가능할 것이며, 효과적인 발전 방향 모색과 변화 추이 분석에 활용이 가능할 것이다.

CRM구축과정에서 마케팅요인이 관계품질과 CRM성과에 미치는 영향 (The Effects on CRM Performance and Relationship Quality of Successful Elements in the Establishment of Customer Relationship Management: Focused on Marketing Approach)

  • 장형유
    • 마케팅과학연구
    • /
    • 제18권4호
    • /
    • pp.119-155
    • /
    • 2008
  • 최근 많은 기업들이 치열한 경쟁에서 생존하기 위해 개별 고객들에게 초점을 맞춘 전사적이고 체계적인 고객관계관리에 전력을 기울이고 있다. 수익성 높은 대부분 기업들의 성공비결은 복합적이겠지만, 고객지향적 사고에의 신속한 적응이 중요한 부분을 차지하고 있다. 고객관계관리 기법 및 운용철학은 고객을 올바르게 이해하는데서 그치지 않고 고객행동을 사전적으로 예측하여 고객요구에 부응한 제품과 서비스를 제공하는 것만이 치열한 경쟁환경에서 생존함과 동시에 거듭된 성장을 이루는 유일한 해결책임을 강조한다. 고객관계관리는 데이터베이스마케팅과 같은 조직내 실무자 중심의 관점과 접근이 아니라 최고경영자의 마케팅 관점의 경영철학 구현을 통한 전사적이고 조직적인 참여가 이루어져야 한다. 그럼에도 불구하고 많은 기업들이 고객관계관리 기법을 도입하고 구축하는 과정에서 이러한 점을 간과해 왔으며 그 결과, 고객관계관리를 통해 수익성을 높인 기업이 있는 반면에 고객관계관리에 엄청난 비용만을 투입하고 별다른 성과를 거두지 못한 기업들도 다수이다. 본 연구는 CRM구축 및 실행과정에서의 성공요인을 기존 연구와 달리 마케팅적 관점에서 발견해 내고 있다. 시장지향성과 고객지향성이라는 마케팅 철학에서부터 고객정 보지향성과 핵심고객지향이라는 실무적 개념까지 포함해서 마케팅적인 관점에서의 성공적 CRM구축을 위한 선행요인을 발견하고, 이러한 요인들이 마케팅관점의 관계품질과 실무적인 CRM성과에 어떤 영향을 미치는지를 분석함과 동시에 관계품질과 CRM성과 간의 관계의 강도까지 실증적으로 분석해 보았다. 경험적 분석 결과 본 연구에서 구축한 마케팅관점의 CRM선행요인들 중에서 일부 요인을 제외하고는 대체적으로 관계품질 및 CRM성과를 높이는데 상당한 기여를 하고 있음이 확인되었으며, 영향관계의 정도에는 어느 정도 차이가 있음이 확인되었다. 또한 관계품질과 CRM성과 및 세부적 개념구성요인들 간에 매우 높은 정(+)의 관계가 존재함을 확인했다. 이는 CRM의 최종 성과를 달성하기 위해서 CRM구축 및 실행이후에 고객만족과 고객신뢰라는 개념적 연결고리를 강화함과 동시에 이러한 관계품질이 고객유지와 고객점유 정도의 향상으로 이어지도록 하는 창조적 전술개발이 요구됨을 의미한다. CRM을 구축 및 실행하는 대부분의 기업들이 조급하게 재무적인 성과를 기대하는 경향이 있는데, CRM은 마케팅철학을 포함하는 장기적인 경영활동임을 주지해야 한다. 기존의 많은 연구들이 취하고 있는 연구맥락에 근거해서 기술적인 시스템만을 갖추었다고 하여 단기적인 성과를 바라는 것은 오히려 비용의 낭비만을 초래 할 수 있음에 주목해야 한다. 본 연구결과를 바탕으로 CRM의 성공적 구축을 통해 관계품질을 강화하는 것에 대한 전략적 통찰을 제공함과 동시에 실질적인 CRM성과를 달성하기 위한 마케팅 관점의 연결구조를 어떻게 효율적으로 강화할 수 있을 것인가에 대한 학술적이고 실무적인 시사점을 도출했다.

  • PDF

치과 외래처방의 실태 조사 (Research on the Actual Condition of Dental Outpatient Prescriptions)

  • 최수미
    • 치위생과학회지
    • /
    • 제5권2호
    • /
    • pp.51-56
    • /
    • 2005
  • 이 연구는 치과진료에서 처방되는 약제를 분석함으로써 해당 치과병 의원의 정보 자료의 제공 등으로 자율적 개선 노력 유도 및 지속적인 처방행태 변화추이 공개로 적정처방 및 벤 치마킹유도와 국민에게 항생제, 주사제 등의 약제 사용실태 홍보로 적정 약제 사용을 위한 인식 변화 유도에 기여하고자 이 연구를 시행하였다. 2003년 7월 1일부터 9월 31일까지 요양기관 34,226개소의 건강보험 외래약제 처방내역을 이용하여 항생제, 주사제의 투약일수율 및 처방률, 투약일당 약품비, 처방건당 약품목수와 고가약품목수의 비중에 대해 분석한 결과 다음과 같은 결론을 얻었다. 1. 항생제에 대한 투약일수율은 치과의원이 90.11%로 전년 동기 및 전분기보다 낮게 나타났으나, 처방률은 15.50%로 전년 동기 및 전분기보다 높게 나타났다. 치과병원의 투약일수율과 처방율은 각각 71.57%와 21.05%로 전분기보다 다소 높게 나타났다. 타종별 요양기관보다는 치과 병 의원의 투약일수율은 매우 높으나 처방률은 낮게 나타났다. 2. 주사제에 대한 투약일수율과 처방률은 치과의원이 각각 0.13%과 0.05%로 전년 동기보다는 감소추세로 나타났으며, 치과병원의 투약일수율과 처방률도 각각 1.03%과 0.88%로 전분기보다 다소 낮게 나타났다. 타 요양기관 종별보다는 치과병 의원의 주사제 투약일수율과 처방률은 매우 낮은 것으로 나타났다. 3. 약품목수는 치과의원이 2.79개로 전년 동기보다는 낮아졌으나 전분기보다는 높게 나타났으며, 치과병원은 2.67개로 전년 동기 및 전분기에 비해 증가된 것으로 나타났다. 타종별 요양기관보다는 치과병 의원 모두 약품목수가 적은 것으로 나타났다. 4. 투약일당 약품비는 치과의원이 863원으로 전년 동기 및 전분기에 비해 증가추세로 나타났으며, 치과병원은 1,385원로 전분기보다 낮게 나타났다. 타종별 요양기관보다는 치과병 의원 모두 낮은 것으로 나타났다. 5. 고가약품목수 비중은 치과의원이 46.43%로 전분기보다 높게 나타났으며, 치과병원은 54.05%로 전분기보다 매우 높게 나타났다. 병 의원에 비해 치과병 의원이 고가약품 목수 비중이 높은 것으로 나타났다. 6. 지역별 외래처방 현황 분석시 항생제 처방률은 광주지역이 가장 높고 대전지역이 가장 낮은 것으로 나타났으며, 주사제 처방률은 2/4분기 결과와 마찬가지로 영남지역이 모두 높은 반면, 수도권 지역은 모두 낮은 처방률로 나타났으며, 지역별 변이도 매우 커 최대지역의 처방률이 최소지역의 처방률의 2배 이상 높은 것으로 나타났다. 투약일당 약품비는 울산지역이 가장 높고 전북지역이 가장 낮게 나타나며, 처방건당 약품목수는 경기지역이 가장 높고 제주지역이 가장 낮게 나타났다.

  • PDF

사용자 리뷰를 통한 소셜커머스와 오픈마켓의 이용경험 비교분석 (A Comparative Analysis of Social Commerce and Open Market Using User Reviews in Korean Mobile Commerce)

  • 채승훈;임재익;강주영
    • 지능정보연구
    • /
    • 제21권4호
    • /
    • pp.53-77
    • /
    • 2015
  • 국내 모바일 커머스 시장은 현재 소셜커머스가 이용자 수 측면에서 오픈마켓을 압도하고 있는 상황이다. 산업계에서는 모바일 시장에서 소셜커머스의 성장에 대해 빠른 모바일 시장진입, 큐레이션 모델 등을 주요 성공요인으로 제시하고 있지만, 이에 대한 학계의 실증적인 연구 및 분석은 아직 미미한 상황이다. 본 연구에서는 사용자 리뷰를 바탕으로 모바일 소셜커머스와 오픈마켓의 사용자 이용경험을 비교 분석하는 탐험적인 연구를 수행하였다. 먼저 본 연구는 구글 플레이에 등록된 국내 소셜커머스 주요 3개 업체와 오픈마켓 주요 3개 업체의 모바일 앱 리뷰를 수집하였다. 본 연구는 LDA 토픽모델링을 통해 1만여건에 달하는 모바일 소셜커머스와 오픈마켓 사용자 리뷰를 지각된 유용성과 지각된 편리성 토픽으로 분류한 뒤 감정분석과 동시출현단어분석을 수행하였다. 이를 통해 본 연구는 국내 모바일 커머스 상에서 오픈마켓 이용자들에 비해 소셜커머스 이용자들이 서비스와 이용편리성 측면에서 더 긍정적인 경험을 하고 있음을 증명하였다. 소셜커머스는 '배송', '쿠폰', '할인'을 중심으로 서비스 측면에서 이용자들에게 긍정적인 이용경험을 이끌어내고 있는 반면, 오픈마켓의 경우 '로그인 안됨', '상세보기 불편', '멈춤'과 같은 기술적 문제 및 불편으로 인한 이용자 불만이 높았다. 이와 같이 본 연구는 사용자 리뷰를 통해 서비스 이용경험을 효과적으로 비교 분석할 수 있는 탐험적인 실증연구법을 제시하였다. 구체적으로 본 연구는 LDA 토픽모델링과 기술수용모형을 통해 사용자 리뷰를 서비스와 기술 토픽으로 분류하여 효과적으로 분석할 수 있는 새로운 방법을 제시하였다는 점에서 의의가 있다. 또한 본 연구의 결과는 향후 소셜커머스와 오픈마켓의 경쟁 및 벤치마킹 전략에 중요하게 활용될 수 있을 것으로 기대된다.

공공보건사업의 지역담당제 실시에 관한 보건기관 근무 공무원의 인식과 태도 (Recognition and Attitude to Implement at ion of Service Area Assigned System of Public Health Programs among the Health Officer)

  • 김미순;이무식;김남송
    • 농촌의학ㆍ지역보건
    • /
    • 제26권2호
    • /
    • pp.15-41
    • /
    • 2001
  • 연구는 전라북도지역의 보건기관 공무원을 대상으로 지역담당제 실시에 관한 인식과 태도에 대한 기초자료를 얻기 위한 목적으로 시도하였다. 보건기관 근무 공무원들은 지역담당제에 대한 이해도가 매우 높았으며, 지역담당제 실시에 있어 그 실시의 필요성을 높게 인식하고 있으나, 그 실시시기는 단계적 실시의 주장이 높았으며, 제공서비스로는 방문간호와 만성질환관리에 높은 의견을 보였다. 건강증진사업에 국한할 시 건강교실이, 노인보건사업에 국한할 시 방문간호와 거동불편자, 독거노인 등이 높게 나타났으며, 지역담당제 구축을 위한 선결과제로는 재원확보, 인력 및 조직이 재정비가 가장 시급한 것으로 인식하고 있다. 제도개선사항으로는 근무여건 개선이 우선이었고, 지역담당제 구축을 위한 정보체계 확립이 부족하다고 인식하고 있으며, 팀별 지역담당제를 통한 보건사업 전달체계 확립을 위해 적정 전문인력의 배치를 가장 높게 들었다. 지역담당제 실시에 관한 이점으로 대상자에 대한 관리가 잘될 수 있고, 전문성 향상으로 환자에 대한 간호의 질이 향상될 것으로 인식하고 있다. 지역보건사업에서의 지역사회 주민의 요구증대 및 다양화에 따른 대응이 부족하며, 보건소의 사업의 내용개발에 있어서 충분히 개발되고 있지 못하다고 인식하고 있다. 그리고 새로운 보건사업의 확장에 있어서 가장 큰 문제로서 획일적(형식적)사업을 들고 있다. 이러한 연구결과 등을 토대로 하여 지역담당제 정착을 위한 검토방안과 추진전략에 대하여 아래와 같이 제언하고자 한다. 첫째, 지역담당제 실시는 단계적으로 담당지역을 선정하여 실시하고, 지역적 특성을 고려한 사업의 추진이 있어야하며, 현행의 보건사업 업무중에서 이들 사업이 지역담당중심으로 수행하는 것이 좋을 것인지 사업중심으로 수행하는 것이 효율적인 것인지를 사업대상 및 범위, 지리적 여건, 현재의 보건소 업무 수행체계를 근거로 검토되는 등 다양한 측면이 재고려되어야 한다. 둘째, 지역사회의 현실적인 요구의 수준과 보건소의 현재 위상을 중심으로 자원과 예산 소요를 추정하고 타당성과 현실성을 검토할 필요가 있으며, 이와 더불어 지역주민의 요구와 수요에 부응할 수 있도록 단계적으로 보건소 방문간호사 인력의 확충방안을 강구하고, 방문간호사 교육 훈련비 및 방문차량 구입비 등을 재원확보 및 지원을 하여야 하며, 보건소 사업에서 지역담당제에 관한 연구개발 및 시범운영이 있어야 할 것으로 판단된다. 셋째, 대상자 관리의 내실화와 지역사회 주민의 서비스 욕구에 대한 만족도를 제고시키기 위하여 사업내용을 충분히 개발해야 하며, 지역담당자의 근무여건을 개선하는 등 전문인력의 배치가 요구된다. 마지막으로 과거와는 달리 환경과 보건에 대한 일반인의 관심이 급격하게 확산되고 있는 상황 속에서 소수 전문가들의 실험적 시범사업으로는 대중적인 지지기반을 확대할 수 없기 때문에 지역담당제가 일반주민의 생활속에서 대중화된 사업으로 정착시킬 수 있어야 하며, 그동안 지역담당제에 대한 논의나 연구가 소수의 연구자 및 한정된 시범지역에 의해서만 연구된 점을 지양하고 폭 넓은 연구가 지속되어야 함을 제언한다.

  • PDF

기계학습을 활용한 상품자산 투자모델에 관한 연구 (A Study on Commodity Asset Investment Model Based on Machine Learning Technique)

  • 송진호;최흥식;김선웅
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.127-146
    • /
    • 2017
  • 상품자산(Commodity Asset)은 주식, 채권과 같은 전통자산의 포트폴리오의 안정성을 높이기 위한 대체투자자산으로 자산배분의 형태로 투자되고 있지만 주식이나 채권 자산에 비해 자산배분에 대한 모델이나 투자전략에 대한 연구가 부족한 실정이다. 최근 발전한 기계학습(Machine Learning) 연구는 증권시장의 투자부분에서 적극적으로 활용되고 있는데, 기존 투자모델의 한계점을 개선하는 좋은 성과를 나타내고 있다. 본 연구는 이러한 기계학습의 한 기법인 SVM(Support Vector Machine)을 이용하여 상품자산에 투자하는 모델을 제안하고자 한다. 기계학습을 활용한 상품자산에 관한 기존 연구는 주로 상품가격의 예측을 목적으로 수행되었고 상품을 투자자산으로 자산배분에 관한 연구는 찾기 힘들었다. SVM을 통한 예측대상은 투자 가능한 대표적인 4개의 상품지수(Commodity Index)인 골드만삭스 상품지수, 다우존스 UBS 상품지수, 톰슨로이터 CRB상품지수, 로저스 인터내셔날 상품지수와 대표적인 상품선물(Commodity Futures)로 구성된 포트폴리오 그리고 개별 상품선물이다. 개별상품은 에너지, 농산물, 금속 상품에서 대표적인 상품인 원유와 천연가스, 옥수수와 밀, 금과 은을 이용하였다. 상품자산은 전반적인 경제활동 영역에 영향을 받기 때문에 거시경제지표를 통하여 투자모델을 설정하였다. 주가지수, 무역지표, 고용지표, 경기선행지표 등 19가지의 경제지표를 이용하여 상품지수와 상품선물의 등락을 예측하여 투자성과를 예측하는 연구를 수행한 결과, 투자모델을 활용하여 상품선물을 리밸런싱(Rebalancing)하는 포트폴리오가 가장 우수한 성과를 나타냈다. 또한, 기존의 대표적인 상품지수에 투자하는 것 보다 상품선물로 구성된 포트폴리오에 투자하는 것이 우수한 성과를 얻었으며 상품선물 중에서도 에너지 섹터의 선물을 제외한 포트폴리오의 성과가 더 향상된 성과를 나타남을 증명하였다. 본 연구에서는 포트폴리오 성과 향상을 위해 기존에 널리 알려진 전통적 주식, 채권, 현금 포트폴리오에 상품자산을 배분하고자 할 때 투자대상은 상품지수에 투자하는 것이 아닌 개별 상품선물을 선정하여 자체적 상품선물 포트폴리오를 구성하고 그 방법으로는 기간마다 강세가 예측되는 개별 선물만을 골라서 포트폴리오를 재구성하는 것이 효과적인 투자모델이라는 것을 제안한다.

물류센터 선진화를 위한 발전 방안에 대한 소고 (A Contemplation on Measures to Advance Logistics Centers)

  • 선일석;이원동
    • 유통과학연구
    • /
    • 제9권1호
    • /
    • pp.17-27
    • /
    • 2011
  • 세계화의 진전으로 기업 간의 경쟁은 날로 치열해지고 있으며 그동안 단순 비용으로만 인식되던 물류분야가 비용과 서비스 제고 측면에서 제3의 이익원으로 인식되고 있다. 이에 물류경로 상에서 공급자와 판매자 및 수송과 보관의 연계를 원활하게 수행하도록 하는 핵심 인프라인 물류센터의 관심이 고조되고 있으며 본 연구에서는 물류센터의 활성화 및 발전을 위한 방안을 모색하고자 한다. 먼저 이론적 고찰을 통하여 선행연구 및 물류센터의 개요 및 역할, 현황 등에 대하여 알아보았으며 물류센터의 문제점 파악과 더불어 물류시설의 수요조사 및 표준화 구축을 위한 가이드 제시, 관련 법령 및 제도 정비, 규제 보완, 불공정 거래 척결을 위한 방안 등의 정책 개선, 공동화, 정보화 등을 통한 효율적 운영을 위한 시스템 구축, 안전관리, 원가산정을 통한 비용개선, 파트너쉽 구축, 재정적 지원, 부처별 협력 등의 발전방안을 제시하였으며, 이러한 방안은 물류센터의 활성화 및 선진화에 도움이 될 것으로 기대한다.

  • PDF