• Title/Summary/Keyword: Information Searching

Search Result 2,888, Processing Time 0.035 seconds

Dynamic Traffic Assignment Using Genetic Algorithm (유전자 알고리즘을 이용한 동적통행배정에 관한 연구)

  • Park, Kyung-Chul;Park, Chang-Ho;Chon, Kyung-Soo;Rhee, Sung-Mo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.1 s.15
    • /
    • pp.51-63
    • /
    • 2000
  • Dynamic traffic assignment(DTA) has been a topic of substantial research during the past decade. While DTA is gradually maturing, many aspects of DTA still need improvement, especially regarding its formulation and solution algerian Recently, with its promise for In(Intelligent Transportation System) and GIS(Geographic Information System) applications, DTA have received increasing attention. This potential also implies higher requirement for DTA modeling, especially regarding its solution efficiency for real-time implementation. But DTA have many mathematical difficulties in searching process due to the complexity of spatial and temporal variables. Although many solution algorithms have been studied, conventional methods cannot iud the solution in case that objective function or constraints is not convex. In this paper, the genetic algorithm to find the solution of DTA is applied and the Merchant-Nemhauser model is used as DTA model because it has a nonconvex constraint set. To handle the nonconvex constraint set the GENOCOP III system which is a kind of the genetic algorithm is used in this study. Results for the sample network have been compared with the results of conventional method.

  • PDF

A study on the improving and constructing the content for the Sijo database in the Period of Modern Enlightenment (계몽기·근대시조 DB의 개선 및 콘텐츠화 방안 연구)

  • Chang, Chung-Soo
    • Sijohaknonchong
    • /
    • v.44
    • /
    • pp.105-138
    • /
    • 2016
  • Recently with the research function, "XML Digital collection of Sijo Texts in the Period of Modern Enlightenment" DB data is being provided through the Korean Research Memory (http://www.krm.or.kr) and the foundation for the constructing the contents of Sijo Texts in the Period of Modern Enlightenment has been laid. In this paper, by reviewing the characteristics and problems of Digital collection of Sijo Texts in the Period of Modern Enlightenment and searching for the improvement, I tried to find a way to make it into the content. This database has the primary meaning in the integrating and glancing at the vast amounts of Sijo in the Period of Modern Enlightenment to reaching 12,500 pieces. In addition, it is the first Sijo data base which is provide the variety of search features according to literature, name of poet, title of work, original text, per period, and etc. However, this database has the limits to verifying the overall aspects of the Sijo in the Period of Modern Enlightenment. The title and original text, which is written in the archaic word or Chinese character, could not be searched, because the standard type text of modern language is not formatted. And also the works and the individual Sijo works released after 1945 were missing in the database. It is inconvenient to extract the datum according to the poet, because poets are marked in the various ways such as one's real name, nom de plume and etc. To solve this kind of problems and improve the utilization of the database, I proposed the providing the standard type text of modern language, giving the index terms about content, providing the information on the work format and etc. Furthermore, if the Sijo database in the Period of Modern Enlightenment which is prepared the character of the Sijo Culture Information System could be built, it could be connected with the academic, educational contents. For the specific plan, I suggested as follow, - learning support materials for the Modern history and the national territory recognition on the Modern Age - source materials for studying indigenous animals and plants characters creating the commercial characters - applicability as the Sijo learning tool such as Sijo Game.

  • PDF

NEW ANTIDEPRESSANTS IN CHILD AND ADOLESCENT PSYCHIATRY (소아청소년정신과영역의 새로운 항우울제)

  • Lee, Soo-Jung
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.14 no.1
    • /
    • pp.12-25
    • /
    • 2003
  • Objectives:As increasing number of new antidepressants have been being introduced in clinical practice, pharmacological understanding has been broadened. These changes mandate new information and theories to be incorporated into the treatment process of children with depressive disorders. In light of newly coming knowledge, this review intended to recapitulate the characteristics of new antidepressants and to consider the pivotal issues to develope guidelines for the treatment of depression in childhood and adolescence. Methods:Searching the Pub-Med online database for the articles with the key words of 'new', 'antidepressants' and 'children' ninety-seven headings of review articles were obtained. The author selected the articles of pertinent subjects in terms of either treatment guideline or psychopharmacology of new antidepressants. When required, articles about the clinical effectiveness of individual antidepressants were separatedly searched. In addition, the safety information of new antidepressants was acquired by browsing the official sites of the United States Food and Drugs Administration and Department of Health and Human Services. Results:1) For the clinical course, treatment phase, and treatment outcome, the reviews or treatment guidelines adopted the information from adult treatment guidelines. 2) Systematic and critical reviews unambiguously concluded that selective serotonin reuptake inhibitors(SSRIs) excelled tricyclic antidepressants( TCAs) for both efficacy and side effect profiles, and were recommend for the first-line choice for the treatment of children with depressive disorders. 3) New antidepressants generally lacked treatment experiences and randomized controlled clinical trials. 4) SSRIs and other new antidepressants, when used together, might result in pharmacokinetic and/or pharmacodynamic drug-to-drug interaction. 5) The difference of the clinical effectiveness of antidepressants between children and adults should be addressed from developmental aspects, which required further evidence. Conclusion:Treatment guidelines for the pharmacological treatment of childhood and adolescence depression could be constructed on the basis of clinical trial findings and practical experiences. Treatment guidelines are to best serve as the frame of reference for a clinician to make reasonable decisions for a particular therapeutic situation. In order to fulfill this role, guidelines should be updated as soon as new research data become available.

  • PDF

A Study of 'Emotion Trigger' by Text Mining Techniques (텍스트 마이닝을 이용한 감정 유발 요인 'Emotion Trigger'에 관한 연구)

  • An, Juyoung;Bae, Junghwan;Han, Namgi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.69-92
    • /
    • 2015
  • The explosion of social media data has led to apply text-mining techniques to analyze big social media data in a more rigorous manner. Even if social media text analysis algorithms were improved, previous approaches to social media text analysis have some limitations. In the field of sentiment analysis of social media written in Korean, there are two typical approaches. One is the linguistic approach using machine learning, which is the most common approach. Some studies have been conducted by adding grammatical factors to feature sets for training classification model. The other approach adopts the semantic analysis method to sentiment analysis, but this approach is mainly applied to English texts. To overcome these limitations, this study applies the Word2Vec algorithm which is an extension of the neural network algorithms to deal with more extensive semantic features that were underestimated in existing sentiment analysis. The result from adopting the Word2Vec algorithm is compared to the result from co-occurrence analysis to identify the difference between two approaches. The results show that the distribution related word extracted by Word2Vec algorithm in that the words represent some emotion about the keyword used are three times more than extracted by co-occurrence analysis. The reason of the difference between two results comes from Word2Vec's semantic features vectorization. Therefore, it is possible to say that Word2Vec algorithm is able to catch the hidden related words which have not been found in traditional analysis. In addition, Part Of Speech (POS) tagging for Korean is used to detect adjective as "emotional word" in Korean. In addition, the emotion words extracted from the text are converted into word vector by the Word2Vec algorithm to find related words. Among these related words, noun words are selected because each word of them would have causal relationship with "emotional word" in the sentence. The process of extracting these trigger factor of emotional word is named "Emotion Trigger" in this study. As a case study, the datasets used in the study are collected by searching using three keywords: professor, prosecutor, and doctor in that these keywords contain rich public emotion and opinion. Advanced data collecting was conducted to select secondary keywords for data gathering. The secondary keywords for each keyword used to gather the data to be used in actual analysis are followed: Professor (sexual assault, misappropriation of research money, recruitment irregularities, polifessor), Doctor (Shin hae-chul sky hospital, drinking and plastic surgery, rebate) Prosecutor (lewd behavior, sponsor). The size of the text data is about to 100,000(Professor: 25720, Doctor: 35110, Prosecutor: 43225) and the data are gathered from news, blog, and twitter to reflect various level of public emotion into text data analysis. As a visualization method, Gephi (http://gephi.github.io) was used and every program used in text processing and analysis are java coding. The contributions of this study are as follows: First, different approaches for sentiment analysis are integrated to overcome the limitations of existing approaches. Secondly, finding Emotion Trigger can detect the hidden connections to public emotion which existing method cannot detect. Finally, the approach used in this study could be generalized regardless of types of text data. The limitation of this study is that it is hard to say the word extracted by Emotion Trigger processing has significantly causal relationship with emotional word in a sentence. The future study will be conducted to clarify the causal relationship between emotional words and the words extracted by Emotion Trigger by comparing with the relationships manually tagged. Furthermore, the text data used in Emotion Trigger are twitter, so the data have a number of distinct features which we did not deal with in this study. These features will be considered in further study.

Electronic Word-of-Mouth in B2C Virtual Communities: An Empirical Study from CTrip.com (B2C허의사구중적전자구비(B2C虚拟社区中的电子口碑): 관우휴정려유망적실증연구(关于携程旅游网的实证研究))

  • Li, Guoxin;Elliot, Statia;Choi, Chris
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.3
    • /
    • pp.262-268
    • /
    • 2010
  • Virtual communities (VCs) have developed rapidly, with more and more people participating in them to exchange information and opinions. A virtual community is a group of people who may or may not meet one another face to face, and who exchange words and ideas through the mediation of computer bulletin boards and networks. A business-to-consumer virtual community (B2CVC) is a commercial group that creates a trustworthy environment intended to motivate consumers to be more willing to buy from an online store. B2CVCs create a social atmosphere through information contribution such as recommendations, reviews, and ratings of buyers and sellers. Although the importance of B2CVCs has been recognized, few studies have been conducted to examine members' word-of-mouth behavior within these communities. This study proposes a model of involvement, statistics, trust, "stickiness," and word-of-mouth in a B2CVC and explores the relationships among these elements based on empirical data. The objectives are threefold: (i) to empirically test a B2CVC model that integrates measures of beliefs, attitudes, and behaviors; (ii) to better understand the nature of these relationships, specifically through word-of-mouth as a measure of revenue generation; and (iii) to better understand the role of stickiness of B2CVC in CRM marketing. The model incorporates three key elements concerning community members: (i) their beliefs, measured in terms of their involvement assessment; (ii) their attitudes, measured in terms of their satisfaction and trust; and, (iii) their behavior, measured in terms of site stickiness and their word-of-mouth. Involvement is considered the motivation for consumers to participate in a virtual community. For B2CVC members, information searching and posting have been proposed as the main purpose for their involvement. Satisfaction has been reviewed as an important indicator of a member's overall community evaluation, and conceptualized by different levels of member interactions with their VC. The formation and expansion of a VC depends on the willingness of members to share information and services. Researchers have found that trust is a core component facilitating the anonymous interaction in VCs and e-commerce, and therefore trust-building in VCs has been a common research topic. It is clear that the success of a B2CVC depends on the stickiness of its members to enhance purchasing potential. Opinions communicated and information exchanged between members may represent a type of written word-of-mouth. Therefore, word-of-mouth is one of the primary factors driving the diffusion of B2CVCs across the Internet. Figure 1 presents the research model and hypotheses. The model was tested through the implementation of an online survey of CTrip Travel VC members. A total of 243 collected questionnaires was reduced to 204 usable questionnaires through an empirical process of data cleaning. The study's hypotheses examined the extent to which involvement, satisfaction, and trust influence B2CVC stickiness and members' word-of-mouth. Structural Equation Modeling tested the hypotheses in the analysis, and the structural model fit indices were within accepted thresholds: ${\chi}^2^$/df was 2.76, NFI was .904, IFI was .931, CFI was .930, and RMSEA was .017. Results indicated that involvement has a significant influence on satisfaction (p<0.001, ${\beta}$=0.809). The proportion of variance in satisfaction explained by members' involvement was over half (adjusted $R^2$=0.654), reflecting a strong association. The effect of involvement on trust was also statistically significant (p<0.001, ${\beta}$=0.751), with 57 percent of the variance in trust explained by involvement (adjusted $R^2$=0.563). When the construct "stickiness" was treated as a dependent variable, the proportion of variance explained by the variables of trust and satisfaction was relatively low (adjusted $R^2$=0.331). Satisfaction did have a significant influence on stickiness, with ${\beta}$=0.514. However, unexpectedly, the influence of trust was not even significant (p=0.231, t=1.197), rejecting that proposed hypothesis. The importance of stickiness in the model was more significant because of its effect on e-WOM with ${\beta}$=0.920 (p<0.001). Here, the measures of Stickiness explain over eighty of the variance in e-WOM (Adjusted $R^2$=0.846). Overall, the results of the study supported the hypothesized relationships between members' involvement in a B2CVC and their satisfaction with and trust of it. However, trust, as a traditional measure in behavioral models, has no significant influence on stickiness in the B2CVC environment. This study contributes to the growing body of literature on B2CVCs, specifically addressing gaps in the academic research by integrating measures of beliefs, attitudes, and behaviors in one model. The results provide additional insights to behavioral factors in a B2CVC environment, helping to sort out relationships between traditional measures and relatively new measures. For practitioners, the identification of factors, such as member involvement, that strongly influence B2CVC member satisfaction can help focus technological resources in key areas. Global e-marketers can develop marketing strategies directly targeting B2CVC members. In the global tourism business, they can target Chinese members of a B2CVC by providing special discounts for active community members or developing early adopter programs to encourage stickiness in the community. Future studies are called for, and more sophisticated modeling, to expand the measurement of B2CVC member behavior and to conduct experiments across industries, communities, and cultures.

The Ontology Based, the Movie Contents Recommendation Scheme, Using Relations of Movie Metadata (온톨로지 기반 영화 메타데이터간 연관성을 활용한 영화 추천 기법)

  • Kim, Jaeyoung;Lee, Seok-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.25-44
    • /
    • 2013
  • Accessing movie contents has become easier and increased with the advent of smart TV, IPTV and web services that are able to be used to search and watch movies. In this situation, there are increasing search for preference movie contents of users. However, since the amount of provided movie contents is too large, the user needs more effort and time for searching the movie contents. Hence, there are a lot of researches for recommendations of personalized item through analysis and clustering of the user preferences and user profiles. In this study, we propose recommendation system which uses ontology based knowledge base. Our ontology can represent not only relations between metadata of movies but also relations between metadata and profile of user. The relation of each metadata can show similarity between movies. In order to build, the knowledge base our ontology model is considered two aspects which are the movie metadata model and the user model. On the part of build the movie metadata model based on ontology, we decide main metadata that are genre, actor/actress, keywords and synopsis. Those affect that users choose the interested movie. And there are demographic information of user and relation between user and movie metadata in user model. In our model, movie ontology model consists of seven concepts (Movie, Genre, Keywords, Synopsis Keywords, Character, and Person), eight attributes (title, rating, limit, description, character name, character description, person job, person name) and ten relations between concepts. For our knowledge base, we input individual data of 14,374 movies for each concept in contents ontology model. This movie metadata knowledge base is used to search the movie that is related to interesting metadata of user. And it can search the similar movie through relations between concepts. We also propose the architecture for movie recommendation. The proposed architecture consists of four components. The first component search candidate movies based the demographic information of the user. In this component, we decide the group of users according to demographic information to recommend the movie for each group and define the rule to decide the group of users. We generate the query that be used to search the candidate movie for recommendation in this component. The second component search candidate movies based user preference. When users choose the movie, users consider metadata such as genre, actor/actress, synopsis, keywords. Users input their preference and then in this component, system search the movie based on users preferences. The proposed system can search the similar movie through relation between concepts, unlike existing movie recommendation systems. Each metadata of recommended candidate movies have weight that will be used for deciding recommendation order. The third component the merges results of first component and second component. In this step, we calculate the weight of movies using the weight value of metadata for each movie. Then we sort movies order by the weight value. The fourth component analyzes result of third component, and then it decides level of the contribution of metadata. And we apply contribution weight to metadata. Finally, we use the result of this step as recommendation for users. We test the usability of the proposed scheme by using web application. We implement that web application for experimental process by using JSP, Java Script and prot$\acute{e}$g$\acute{e}$ API. In our experiment, we collect results of 20 men and woman, ranging in age from 20 to 29. And we use 7,418 movies with rating that is not fewer than 7.0. In order to experiment, we provide Top-5, Top-10 and Top-20 recommended movies to user, and then users choose interested movies. The result of experiment is that average number of to choose interested movie are 2.1 in Top-5, 3.35 in Top-10, 6.35 in Top-20. It is better than results that are yielded by for each metadata.

A Study on Searching for Export Candidate Countries of the Korean Food and Beverage Industry Using Node2vec Graph Embedding and Light GBM Link Prediction (Node2vec 그래프 임베딩과 Light GBM 링크 예측을 활용한 식음료 산업의 수출 후보국가 탐색 연구)

  • Lee, Jae-Seong;Jun, Seung-Pyo;Seo, Jinny
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.73-95
    • /
    • 2021
  • This study uses Node2vec graph embedding method and Light GBM link prediction to explore undeveloped export candidate countries in Korea's food and beverage industry. Node2vec is the method that improves the limit of the structural equivalence representation of the network, which is known to be relatively weak compared to the existing link prediction method based on the number of common neighbors of the network. Therefore, the method is known to show excellent performance in both community detection and structural equivalence of the network. The vector value obtained by embedding the network in this way operates under the condition of a constant length from an arbitrarily designated starting point node. Therefore, it has the advantage that it is easy to apply the sequence of nodes as an input value to the model for downstream tasks such as Logistic Regression, Support Vector Machine, and Random Forest. Based on these features of the Node2vec graph embedding method, this study applied the above method to the international trade information of the Korean food and beverage industry. Through this, we intend to contribute to creating the effect of extensive margin diversification in Korea in the global value chain relationship of the industry. The optimal predictive model derived from the results of this study recorded a precision of 0.95 and a recall of 0.79, and an F1 score of 0.86, showing excellent performance. This performance was shown to be superior to that of the binary classifier based on Logistic Regression set as the baseline model. In the baseline model, a precision of 0.95 and a recall of 0.73 were recorded, and an F1 score of 0.83 was recorded. In addition, the light GBM-based optimal prediction model derived from this study showed superior performance than the link prediction model of previous studies, which is set as a benchmarking model in this study. The predictive model of the previous study recorded only a recall rate of 0.75, but the proposed model of this study showed better performance which recall rate is 0.79. The difference in the performance of the prediction results between benchmarking model and this study model is due to the model learning strategy. In this study, groups were classified by the trade value scale, and prediction models were trained differently for these groups. Specific methods are (1) a method of randomly masking and learning a model for all trades without setting specific conditions for trade value, (2) arbitrarily masking a part of the trades with an average trade value or higher and using the model method, and (3) a method of arbitrarily masking some of the trades with the top 25% or higher trade value and learning the model. As a result of the experiment, it was confirmed that the performance of the model trained by randomly masking some of the trades with the above-average trade value in this method was the best and appeared stably. It was found that most of the results of potential export candidates for Korea derived through the above model appeared appropriate through additional investigation. Combining the above, this study could suggest the practical utility of the link prediction method applying Node2vec and Light GBM. In addition, useful implications could be derived for weight update strategies that can perform better link prediction while training the model. On the other hand, this study also has policy utility because it is applied to trade transactions that have not been performed much in the research related to link prediction based on graph embedding. The results of this study support a rapid response to changes in the global value chain such as the recent US-China trade conflict or Japan's export regulations, and I think that it has sufficient usefulness as a tool for policy decision-making.

A Study on the Risk Factors for Maternal and Child Health Care Program with Emphasis on Developing the Risk Score System (모자건강관리를 위한 위험요인별 감별평점분류기준 개발에 관한 연구)

  • 이광옥
    • Journal of Korean Academy of Nursing
    • /
    • v.13 no.1
    • /
    • pp.7-21
    • /
    • 1983
  • For the flexible and rational distribution of limited existing health resources based on measurements of individual risk, the socalled Risk Approach is being proposed by the World Health Organization as a managerial tool in maternal and child health care program. This approach, in principle, puts us under the necessity of developing a technique by which we will be able to measure the degree of risk or to discriminate the future outcomes of pregnancy on the basis of prior information obtainable at prenatal care delivery settings. Numerous recent studies have focussed on the identification of relevant risk factors as the Prior infer mation and on defining the adverse outcomes of pregnancy to be dicriminated, and also have tried on how to develope scoring system of risk factors for the quantitative assessment of the factors as the determinant of pregnancy outcomes. Once the scoring system is established the technique of classifying the patients into with normal and with adverse outcomes will be easily de veloped. The scoring system should be developed to meet the following four basic requirements. 1) Easy to construct 2) Easy to use 3) To be theoretically sound 4) To be valid In searching for a feasible methodology which will meet these requirements, the author has attempted to apply the“Likelihood Method”, one of the well known principles in statistical analysis, to develop such scoring system according to the process as follows. Step 1. Classify the patients into four groups: Group $A_1$: With adverse outcomes on fetal (neonatal) side only. Group $A_2$: With adverse outcomes on maternal side only. Group $A_3$: With adverse outcome on both maternal and fetal (neonatal) sides. Group B: With normal outcomes. Step 2. Construct the marginal tabulation on the distribution of risk factors for each group. Step 3. For the calculation of risk score, take logarithmic transformation of relative proport-ions of the distribution and round them off to integers. Step 4. Test the validity of the score chart. h total of 2, 282 maternity records registered during the period of January 1, 1982-December 31, 1982 at Ewha Womans University Hospital were used for this study and the“Questionnaire for Maternity Record for Prenatal and Intrapartum High Risk Screening”developed by the Korean Institute for Population and Health was used to rearrange the information on the records into an easy analytic form. The findings of the study are summarized as follows. 1) The risk score chart constructed on the basis of“Likelihood Method”ispresented in Table 4 in the main text. 2) From the analysis of the risk score chart it was observed that a total of 24 risk factors could be identified as having significant predicting power for the discrimination of pregnancy outcomes into four groups as defined above. They are: (1) age (2) marital status (3) age at first pregnancy (4) medical insurance (5) number of pregnancies (6) history of Cesarean sections (7). number of living child (8) history of premature infants (9) history of over weighted new born (10) history of congenital anomalies (11) history of multiple pregnancies (12) history of abnormal presentation (13) history of obstetric abnormalities (14) past illness (15) hemoglobin level (16) blood pressure (17) heart status (18) general appearance (19) edema status (20) result of abdominal examination (21) cervix status (22) pelvis status (23) chief complaints (24) Reasons for examination 3) The validity of the score chart turned out to be as follows: a) Sensitivity: Group $A_1$: 0.75 Group $A_2$: 0.78 Group $A_3$: 0.92 All combined : 0.85 b) Specificity : 0.68 4) The diagnosabilities of the“score chart”for a set of hypothetical prevalence of adverse outcomes were calculated as follows (the sensitivity“for all combined”was used). Hypothetidal Prevalence : 5% 10% 20% 30% 40% 50% 60% Diagnosability : 12% 23% 40% 53% 64% 75% 80%.

  • PDF

A Regression-Model-based Method for Combining Interestingness Measures of Association Rule Mining (연관상품 추천을 위한 회귀분석모형 기반 연관 규칙 척도 결합기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.127-141
    • /
    • 2017
  • Advances in Internet technologies and the proliferation of mobile devices enabled consumers to approach a wide range of goods and services, while causing an adverse effect that they have hard time reaching their congenial items even if they devote much time to searching for them. Accordingly, businesses are using the recommender systems to provide tools for consumers to find the desired items more easily. Association Rule Mining (ARM) technology is advantageous to recommender systems in that ARM provides intuitive form of a rule with interestingness measures (support, confidence, and lift) describing the relationship between items. Given an item, its relevant items can be distinguished with the help of the measures that show the strength of relationship between items. Based on the strength, the most pertinent items can be chosen among other items and exposed to a given item's web page. However, the diversity of the measures may confuse which items are more recommendable. Given two rules, for example, one rule's support and confidence may not be concurrently superior to the other rule's. Such discrepancy of the measures in distinguishing one rule's superiority from other rules may cause difficulty in selecting proper items for recommendation. In addition, in an online environment where a web page or mobile screen can provide a limited number of recommendations that attract consumer interest, the prudent selection of items to be included in the list of recommendations is very important. The exposure of items of little interest may lead consumers to ignore the recommendations. Then, such consumers will possibly not pay attention to other forms of marketing activities. Therefore, the measures should be aligned with the probability of consumer's acceptance of recommendations. For this reason, this study proposes a model-based approach to combine those measures into one unified measure that can consistently determine the ranking of recommended items. A regression model was designed to describe how well the measures (independent variables; i.e., support, confidence, and lift) explain consumer's acceptance of recommendations (dependent variables, hit rate of recommended items). The model is intuitive to understand and easy to use in that the equation consists of the commonly used measures for ARM and can be used in the estimation of hit rates. The experiment using transaction data from one of the Korea's largest online shopping malls was conducted to show that the proposed model can improve the hit rates of recommendations. From the top of the list to 13th place, recommended items in the higher rakings from the proposed model show the higher hit rates than those from the competitive model's. The result shows that the proposed model's performance is superior to the competitive model's in online recommendation environment. In a web page, consumers are provided around ten recommendations with which the proposed model outperforms. Moreover, a mobile device cannot expose many items simultaneously due to its limited screen size. Therefore, the result shows that the newly devised recommendation technique is suitable for the mobile recommender systems. While this study has been conducted to cover the cross-selling in online shopping malls that handle merchandise, the proposed method can be expected to be applied in various situations under which association rules apply. For example, this model can be applied to medical diagnostic systems that predict candidate diseases from a patient's symptoms. To increase the efficiency of the model, additional variables will need to be considered for the elaboration of the model in future studies. For example, price can be a good candidate for an explanatory variable because it has a major impact on consumer purchase decisions. If the prices of recommended items are much higher than the items in which a consumer is interested, the consumer may hesitate to accept the recommendations.

(Image Analysis of Electrophoresis Gels by using Region Growing with Multiple Peaks) (다중 피크의 영역 성장 기법에 의한 전기영동 젤의 영상 분석)

  • 김영원;전병환
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.444-453
    • /
    • 2003
  • Recently, a great interest of bio-technology(BT) is concentrated and the image analysis technique for electrophoresis gels is highly requested to analyze genetic information or to look for some new bio-activation materials. For this purpose, the location and quantity of each band in a lane should be measured. In most of existing techniques, the approach of peak searching in a profile of a lane is used. But this peak is improper as the representative of a band, because its location does not correspond to that of the brightest pixel or the center of gravity. Also, it is improper to measure band quantity in most of these approaches because various enhancement processes are commonly applied to original images to extract peaks easily. In this paper, we adopt an approach to measure accumulated brightness as a band quantity in each band region, which Is extracted by not using any process of changing relative brightness, and the gravity center of the region is calculated as a band location. Actually, we first extract lanes with an entropy-based threshold calculated on a gel-image histogram. And then, three other methods are proposed and applied to extract bands. In the MER method, peaks and valleys are searched on a vertical search line by which each lane is bisected. And the minimum enclosing rectangle of each band is set between successive two valleys. On the other hand, in the RG-1 method, each band is extracted by using region growing with a peak as a seed, separating overlapped neighbor bands. In the RG-2 method, peaks and valleys are searched on two vertical lines by which each lane is trisected, and the left and right peaks nay be paired up if they seem to belong to the same band, and then each band region is grown up with a peak or both peaks if exist. To compare above three methods, we have measured the location and amount of bands. As a result, the average errors in band location of MER, RG-1, and RG-2 were 6%, 3%, and 1%, respectively, when the lane length is normalized to a unit value. And the average errors in band amount were 8%, 5%, and 2%, respectively, when the sum of band amount is normalized to a unit value. In conclusion, RG-2 was shown to be more reliable in the accuracy of measuring the location and amount of bands.