• Title/Summary/Keyword: Information RoadMap

Search Result 481, Processing Time 0.024 seconds

A Study on the Assessment Method of Noise Exposure Population Using the Over-ride value Noise map (Over-ride Value소음지도를 이용한 소음노출인구 산정방법 연구)

  • Park, In-Sun;Park, Sang-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.911-916
    • /
    • 2005
  • Noise map is a presentation of existing data or predicted noise situation in terms of noise indicator. However, it has shortcoming for assessing the number of people exposed, or the number of dwellings affected to any relevant limit values of noise level in certain areas. In this study, so called over-ride value noise mapping is proposed to make up for the shortcoming by using over-ride function of object-oriented programming and it is to show the guard of the area where it is satisfied the standard of option, or it is not satisfactory. Over-ride value noisemap data is combined with topography layer, population and house statistics, and GIS space statistical analysis. The over-ride value noise mapping can also he applied to make the road traffic noisemap, the railroad noisemap, the aircraft noisemap, and the industrial site noisemap This can express noise damage information more exactly.

  • PDF

Human Sensibility Ergonomics Evaluation of the Car Navigation System Digital Map (자동차 항법장치 도로지도의 감성공학적 평가에 관한 연구)

  • Cha, Doo-Won;Paek, Seung-Reu;Park, Peom
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.48
    • /
    • pp.101-111
    • /
    • 1998
  • CNS (Car Navigation System) is the most compatible candidate among various in-vehicle information systems as a provider of ITS (Intelligence Transport Systems) information. It generally consists of remote controller, display, CD-changer, GPS receiver and so on. Among them, display is the most important and critical element of the HMI (Human-Machine Interface) suggesting the digital map to the driver. Therefore, it is certain that the display gives cognitive, physical, mental and visual workloads to the driver which are directly related with the driver's and road safety with the success of ITS. Until now, various human factors techniques have been developed and applied to estimate the driver's workload and to collect the driver's requirements of the CNS digital map, for example, mental workload assessment, visual activity analysis, cognitive analysis and so on. In addition to these kinds of techniques, this research performed the human sensibility ergonomics approach to directly investigate and evaluate the driver's requirements and sensibilities of the real products.

  • PDF

Road design applied to the Air LiDAR data for basic research (항공 LiDAR 데이터를 도로설계에 적용하기 위한 기초연구)

  • Jang, Eun-Seok;Yun, Hong-Sic;Kim, Yong-Hyeon;Bae, Hyung-Look
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.263-266
    • /
    • 2010
  • The research design of the road for the LiDAR survey data was available, LiDAR data currently exists for this area Daejeon, Gongju area two map sheet selected of the LiDAR data and figures were produced using the DEM, respectively. The scale 1 / 5, 000 of figures produced by using the DEM and LiDAR DEM data comparing the results produced by the difference in some areas or That could be found. The accuracy of LiDAR data in the road design to use more accurate information on terrain, roads and construction of the linear installation cost savings Contribution will be considered.

  • PDF

Block Space-based Multipath Routing in Vehicular Ad-hoc Networks (VANET 환경에서의 공간 기반 다중경로 라우팅 방안에 관한)

  • Yim, Jinhyuk;Kim, Hoewon;Lee, Hyunkyu;Lee, Euisin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.106-107
    • /
    • 2016
  • Vehicular Adhoc Network는 accident warning, road condition message와 같은 도로상의 정보를 vehicle-to-vehicle 통신을 통해 주어진 목적지까지 얼마나 빠르고 정확하게 전송하는 것이 주요 이슈이다. 무선 센서 네트워크의 많은 타입들 중에서 VANET 환경에 적합한 source 기반의 라우팅 프로토콜은 불안정한 이동 네트워크의 역할을 충실히 수행할 수 있다. Source 라우팅 기법들을 연구하는데 road topology와 map 정보가 사용되며, 본문에서는 도로의 상황과, 라우팅이 직접 수행되는 영역을 부분으로 나누어 각 영역에 속한 이동 노드를 파악하여 다중 경로 라우팅 방안을 제시하여 error 발생과 link fail에 대한 신속한 대처를 수행한다.

Study on Automated Error Detection Method for Enhancing High Definition Map (정밀도로지도 레이어의 품질향상을 위한 자동오류 판독 연구)

  • Hong, Song Pyo;Oh, Jong Min;Song, Yong Hyun;Shin, Young Min;Sung, Dong Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.391-399
    • /
    • 2020
  • Autonomous driving can be limited by only using sensors if the sensor is blocked by sudden changes in surrounding environments or large features such as heavy vehicles. In order to overcome the limitations, the precise road-map has been used additionally. In korea, the NGII (National Geographic Information Institute) produces and supplies high definition map for autonomous vehicles. Accordingly, in this study, errors occurring in the process of e data editing and dtructured esditing of high definition map are systematically typed providing by the National Geographic Information Institute. In addition, by presenting the error search process and solution for each situation, we conducted a study to quickly correct errors in high definition map, and largely classify the error items for shape integrity, spatial relationship, and reference relationship, and examine them in detail. The method was derived.

Land Use Analysis of Chung-Ju Road Circumstance Using Remote Sensing (RS를 이용한 충주시 간선도로 주변의 토지이용 분석)

  • Shin, Ke-Jong;Yu, Young-Geol;Hwang, Eui-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.436-443
    • /
    • 2009
  • There have been rapid increases to the demands for modeling diverse and complex spatial phenomena and utilizing spatial data through the computer across all the aspects of society. As a result, the importance and utilization of remote sensing and GIS's(geographic information systems) have also increased. It can produce digital data of enormous accuracy and value by incorporating remote sensing images into GIS analysis technology and make various thematic maps by classifying and analyzing land cover. Once such a map is made for the target area, it can easily do modeling and constant monitoring based on the map, revise the database with ease, and thus efficiently update geo-spatial information. Under the goal of analyzing changes to land cover along the road by combining the remote sensing and GIS technology, this study classified land cover from the images of two periods, detected changes to the six classes over ten years, and obtained statistics about the study area's quantitative area changes in order to provide basic decision making data for urban planning and development. By analyzing land use along the road, one can set up plans for the area along the road and the downtown to supplement each other.

Evaluation of Horizontal Position Accuracy in Forest Road Completion Drawing (임도 준공도면의 수평위치 정확도 평가에 관한 연구)

  • Kim, Myeong-Jun;Kweon, Hyeong-Keun;Choi, Yeon-Ho;Yeom, In-Hwan;Lee, Joon-Woo
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.471-479
    • /
    • 2010
  • Forest roads of 16,424km have been constructed as infrastructure for efficient management of forest. The demand of forest road have been also increased steadily with SOC conception for forest management and wood production. But, accuracy verification by completion drawing of forest road needed aspects extration of geographic information to sound like forest road construction and completion drawing. However, verification for completion drawing has not ascertained. This study carried out the evaluation for position accuracy about constructed forest road in Chungcheongnam-do for evaluating horizontal position accuracy of completion drawing of forest road. In result, first of distance of completion drawing and real route designed completion drawing longer than the real route as Gongju 83m, Seosan 66m, Nonsan 27m and Dangjin 19m, respectively. Second, RMSE by point-correspondence was 11m~14.7m, buffering analysis appeared difference of 18~24m. Finally, index of shape was the similar completion and real route through 6.5~7.4 and data information of forest road corresponds to be perfect. For such reasons, the existing completion drawings have a problem that it cannot use graphic information for drawing digital map according to the regulation, and there is an urgent need for improvement to solve this problem in the process of design and construction.

Motion Field Estimation Using U-disparity Map and Forward-Backward Error Removal in Vehicle Environment (U-시차 지도와 정/역방향 에러 제거를 통한 자동차 환경에서의 모션 필드 예측)

  • Seo, Seungwoo;Lee, Gyucheol;Lee, Sangyong;Yoo, Jisang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2343-2352
    • /
    • 2015
  • In this paper, we propose novel motion field estimation method using U-disparity map and forward-backward error removal in vehicles environment. Generally, in an image obtained from a camera attached in a vehicle, a motion vector occurs according to the movement of the vehicle. but this motion vector is less accurate by effect of surrounding environment. In particular, it is difficult to extract an accurate motion vector because of adjacent pixels which are similar each other on the road surface. Therefore, proposed method removes road surface by using U-disparity map and performs optical flow about remaining portion. forward-backward error removal method is used to improve the accuracy of the motion vector. Finally, we predict motion of the vehicle by applying RANSAC(RANdom SAmple Consensus) from acquired motion vector and then generate motion field. Through experimental results, we show that the proposed algorithm performs better than old schemes.

A Study on the Construction of 3D Noisemap for Busan's Road Traffic Noise (부산시 도로교통소음의 3차원 소음지도제작에 관한 연구)

  • Kim, Hwa-Il;Han, Kyoung-Min
    • Journal of Environmental Policy
    • /
    • v.6 no.1
    • /
    • pp.111-132
    • /
    • 2007
  • The traffic noise of Busan, the second largest city in Korea, is polluting the area. Noise map is a map that shows data on an existing or predicted noise condition in terms of a noise indicator, breaches of a limit value, the number of dwellings exposed to certain values of a noise indicator in a certain area, or on cost-benefit ratios or other economic data on mitigation methods or scenarios with Geographic Information System. With noise map, the effect of traffic noise and the efficiency of city development plan are exactly estimated. So making systematic counteroffer is possible with it. This study is aimed to the construction of basis for noise map construction method for domestic use and the area focus is Busan.

  • PDF

Stereo Vision-Based Obstacle Detection and Vehicle Verification Methods Using U-Disparity Map and Bird's-Eye View Mapping (U-시차맵과 조감도를 이용한 스테레오 비전 기반의 장애물체 검출 및 차량 검증 방법)

  • Lee, Chung-Hee;Lim, Young-Chul;Kwon, Soon;Lee, Jong-Hun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.86-96
    • /
    • 2010
  • In this paper, we propose stereo vision-based obstacle detection and vehicle verification methods using U-disparity map and bird's-eye view mapping. First, we extract a road feature using maximum frequent values in each row and column. And we extract obstacle areas on the road using the extracted road feature. To extract obstacle areas exactly we utilize U-disparity map. We can extract obstacle areas exactly on the U-disparity map using threshold value which consists of disparity value and camera parameter. But there are still multiple obstacles in the extracted obstacle areas. Thus, we perform another processing, namely segmentation. We convert the extracted obstacle areas into a bird's-eye view using camera modeling and parameters. We can segment obstacle areas on the bird's-eye view robustly because obstacles are represented on it according to ranges. Finally, we verify the obstacles whether those are vehicles or not using various vehicle features, namely road contacting, constant horizontal length, aspect ratio and texture information. We conduct experiments to prove the performance of our proposed algorithms in real traffic situations.