• Title/Summary/Keyword: Information Gain(IG)

Search Result 55, Processing Time 0.024 seconds

Design of Compact Series-fed Dipole Pair Antenna with End-loaded Rectangular Patches (사각형 패치가 종단에 장하된 소형 직렬 급전 다이폴 쌍 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig;Park, Jin-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2245-2251
    • /
    • 2013
  • In this paper, a design of a compact series-fed dipole pair(SDP) antenna with end-loaded rectangular patches is presented. In order to reduce the lateral size of a conventional SDP antenna, rectangular patches are end-loaded to the two dipole elements of the SDP antenna and a grooved ground plane is used by adding a patch at both ends of the ground plane. The effects of varying the length and width of the rectangular patches on the antenna performance such as input reflection coefficient are investigated. An optimized compact SDP antenna covering a frequency band ranging from 1.7 GHz to 2.7 GHz is designed and fabricated on an FR4 substrate. The total width of the fabricated prototype of the proposed antenna is reduced by approximately 14.3% compared to the conventional SDP antenna. Experimental results show that the antenna presents a 48.7% bandwidth in the range of 1.68-2.76 GHz and a stable gain of 5.6-6.0 dBi with minimal degradation. Moreover, a front-to-back ratio is improved by about 0.7 to 7.4 dB.

Design of a compact quasi-Yagi antenna for portable RFID reader (휴대형 RFID 리더용 소형 준-야기 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho;Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.15-21
    • /
    • 2016
  • In this paper, we considered a design method of a compact quasi-Yagi antenna for portable UHF RFID readers. The antenna consists of a dipole driver and a reflector printed on a dielectric substrate, and it is fed by a microstrip line. In order to reduce the antenna size, the dipole and reflector are bent and the balun between the feeding microstrip line and coplanar strip (CPS) line is integrated within the CPS line. The effects of the geometrical parameters of the proposed antenna on the antenna performance are examined, and the parameters are adjusted to be suitable for the operation in UHF RFID band (902-928 MHz). The size of the fabricated antenna is $70mm{\times}75mm$, and the experiment results reveal a frequency band of 892-942 MHz for a voltage standing wave ratio < 2, a gain > 3.5 dBi, and a front-to-back ratio > 6.6 dB over the frequency band for UHF RFID.

Wideband Stacked Microstrip Antenna with Rectangular and Triangular Parasitic Patches for 860MHz Band (직사각형 및 삼각형 기생패치를 이용한 860MHz 대역 광대역 적층 마이크로스트립 안테나)

  • Ko, Jin-Hyun;Kim, Gun-Kyun;Rhee, Seung-Yeop;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.874-879
    • /
    • 2016
  • A wideband stacked patch antenna with parasitic elements, rectangular and triangle shaped patches, is proposed. Two different shaped parasitic elements are placed in the above of main rectangular microstrip patch antenna in order to achieve wide bandwidth for 860 MHz band. Coupling between the main patch and parasitic patches is realized by thick air gap. The gap and locations of parasitic patches are found to be the main factor of the wideband impedance matching. The proposed antenna is designed and fabricated on a ground plane with small size of $119mm{\times}109mm$ for application of compact transceivers. The fabricated antenna on an FR4 substrate shows that the minimum measured return loss is below -11.68dB at 824 MHz and an impedance band of 818~919 MHz(11.7%) at 10dB return loss level. The measured radiation patterns are similar to those of a conventional patch antenna with maximum gain of 2.11 dBi at 824 MHz.

Design of a Wideband Double-sided Dipole Array Antenna for a 3.5 GHz band (3.5 GHz대역용 광대역 양면 다이폴 배열 안테나 설계)

  • Kim, GunKyun;Kang, Nyoung-Hak;Rhee, Seung-Yeop;Lee, Jong-Ig;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.61-62
    • /
    • 2018
  • In this paper, we studied a wideband double-sided dipole antenna operating at 3.5 GHz (WiMAX) band. The each printed dipoles are placed on the both sides of the substrate. It can be easily implemented and is suitable for connection with an active circuit. In order to obtain wideband printed dipole characteristics, thick rectangular shaped dipole is adopted. Feeding Circuit for dipole array and balun were designed for impedance matching with a $50{\Omega}$ microstrip feed line. The antenna is designed by simulation for an operation in the frequency range of 3.4~3.7 GHz Simulation results show that the maximum gain in the 3.5 GHz band is 5.5 dBi and the bandwidth with VSWR less than 2 is about 1 GHz.

  • PDF

3-Element Quasi-Yagi Antenna with a Modified Balun for DTV Reception (변형된 밸런을 갖는 DTV 수신용 3소자 준-야기 안테나)

  • Lee, Jong-Ig;Yeo, Junho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.672-678
    • /
    • 2017
  • In this paper, we studied a design method for a broadband quasi-Yagi antenna (QYA) for terrestrial digital television (DTV) reception. The proposed antenna is composed of a dipole driver, a rectangular patch type director close to the dipole, and a ground reflector printed on an FR4 substrate. A balun between a microstrip line and a coplanar strip (CPS) line is a rectangular patch inserted along the center of the CPS. The end of the balun is connected to the CPS line through a shorting pin. An antenna, as an design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV, and the characteristics of the designed antenna are examined. The antenna has a good performance such as a frequency band of 430-842 MHz for a voltage standing wave ratio < 2, a gain > 3.7 dBi, and a front-to-back ratio > 7.4 dB.

Design of Dual-band Monopole Antenna for WLAN and UWB Applications (WLAN 및 UWB 응용을 위한 이중 대역 모노폴 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig;Park, Jin-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.811-817
    • /
    • 2014
  • In this paper, a design method for a dual-band monopole antenna operating in the bands of 2.45 GHz WLAN and UWB is studied. A monopole antenna operating in UWB band is first designed, and a slot is inserted on the monopole to operate in 2.45 GHz WLAN band. The optimized dual-band monopole antenna is fabricated on an FR4 substrate, and the experimental results show that the antenna has a dual-band characterisitc in WLAN and UWB bands with the frequency bands of 2.35-2.50 GHz and 2.99-11.82 GHz for a VSWR < 2. Measured gain is 1 dBi at 2.45 GHz, and ranges 1.5-4.6 dBi in the frequency band of 3.1-10.6 GHz.

Broadband Quasi-Yagi Antenna with a Ring-type Balun for Indoor DTV Reception (링형 밸런을 이용한 실내 DTV 수신용 광대역 준-야기 안테나)

  • Lee, Jong-Ig;Yeo, Junho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.906-912
    • /
    • 2017
  • In this paper, we studied a design method for a broadband 3-element quasi-Yagi antenna (QYA) for indoor digital television (DTV) reception. The proposed QYA employs a novel balun between a microstrip (MS) line and a coplanar strip (CPS) line feeding the driver dipole. The proposed balun is constructed by connecting the end of MS line to CPS line through a shorting pin, and the CPS and ground reflector are connected through a circular ring-type conductor. An antenna, as an design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV. The antenna fabricated on an FR4 substrate with a size of $270mm{\times}150mm$ showed a good performance such as a frequency band of 470-820 MHz for a voltage standing wave ratio < 2, a gain > 4.0 dBi, and a front-to-back ratio > 8.4 dB over the DTV frequency band.

Design of a Broadband Quasi-Yagi Antenna for UHF Band (UHF 대역 광대역 준-야기 안테나 설계)

  • Yang, Myung-Gyu;Lee, Yun-Joo;Kwon, Jun-Hyoek;Lee, Chang-Kyun;Lee, Jong-Ig;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.939-940
    • /
    • 2015
  • In this paper, a design method for a quasi-Yagi antenna (QYA) suitable for UHF band is studied. Due to the mutual coupling between a coplanar strip (CPS)-fed planar dipole and a conducting strip director placed close to the dipole, the dipole obtains broadband characteristics. A ground reflector improves gain in the lower frequency band, and the antenna size might be reduced by employing a bent reflector. The balun between the CPS line and the microstrip(MS) line is constructed by connecting the end of MS line and the CPS line through a shorting pin. In addition, a ring-type conductor connects the CPS line and reflector. The effects of various geometrical parameters and balun on the antenna characteristics are examined. An antenna, as an design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV.

  • PDF

Compact Dual-band CPW-fed Slot Antenna Using Split-Ring Resonator (분할 링 공진기를 이용한 소형 이중 대역 CPW-급전 슬롯 안테나)

  • Yeo, Junho;Park, Jin-Taek;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2526-2533
    • /
    • 2015
  • In this paper, a design method for a compact dual-band coplanar waveguide-fed slot antenna using SRR(split-ring resonator) conductor is studied. The SRR conductor is loaded inside a rectangular slot of the proposed antenna for dual-band operation. When the SRR conductor is inserted into the slot, the original rectangular slot is divided into a rectangular loop region and a rectangular slot region, and frequency bands are created by the loop and slot, separately. A prototype of the proposed dual-band slot antenna operating at 2.45 GHz WLAN band and 3.40-5.35 GHz band is fabricated on an FR4 substrate with a dimension of 30 mm by 30 mm. Experiment results show that the antenna has a desired impedance characteristic with a frequency band of 2.38-2.51 GHz and 3.32-5.38 GHz for a voltage standing wave < 2, and measured gain is 1.7 dBi at 2.45 GHz, and it ranges 2.4-3.2 dBi in the second band.

Design of Compact CPW-fed Slot Antenna Using Split-Ring Resonators (분할 링 공진기를 이용한 소형 CPW급전 슬롯 안테나 설계)

  • Park, Jin-Taek;Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2351-2358
    • /
    • 2014
  • In this paper, a design method for a compact CPW-fed slot antenna using SRRs is studied. The structure of the proposed slot antenna is a rectangular slot antenna loaded with SRR conductors inside the slot to reduce the antenna size. Optimal design parameters are obtained by analyzing the effects of the gap between the SRR conductors and slot, and the width of the SRR conductors on the input VSWR characteristic. The optimized compact slot antenna operating at 2.45 GHz band is fabricated on an FR4 substrate with a dimension of 36 mm by 30 mm. The length of the proposed compact slot antenna is reduced to 14.3% compared to that of a conventional rectangular slot antenna. Experiment results show that the antenna has a desired impedance characteristic with a frequency band of 2.4-2.49 GHz for a VSWR < 2, and measured gain of 2.3 dBi at 2.45 GHz.