• Title/Summary/Keyword: Informal Competition

Search Result 13, Processing Time 0.02 seconds

A Coevolution of Artificial-Organism Using Classification Rule And Enhanced Backpropagation Neural Network (분류규칙과 강화 역전파 신경망을 이용한 이종 인공유기체의 공진화)

  • Cho Nam-Deok;Kim Ki-Tae
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.349-356
    • /
    • 2005
  • Artificial Organism-used application areas are expanding at a break-neck speed with a view to getting things done in a dynamic and Informal environment. A use of general programming or traditional hi methods as the representation of Artificial Organism behavior knowledge in these areas can cause problems related to frequent modifications and bad response in an unpredictable situation. Strategies aimed at solving these problems in a machine-learning fashion includes Genetic Programming and Evolving Neural Networks. But the learning method of Artificial-Organism is not good yet, and can't represent life in the environment. With this in mind, this research is designed to come up with a new behavior evolution model. The model represents behavior knowledge with Classification Rules and Enhanced Backpropation Neural Networks and discriminate the denomination. To evaluate the model, the researcher applied it to problems with the competition of Artificial-Organism in the Simulator and compared with other system. The survey shows that the model prevails in terms of the speed and Qualify of learning. The model is characterized by the simultaneous learning of classification rules and neural networks represented on chromosomes with the help of Genetic Algorithm and the consolidation of learning ability caused by the hybrid processing of the classification rules and Enhanced Backpropagation Neural Network.

A Narrative Inquiry on Korea Science Academy Physical Education Teachers's Assessment Experiences (한국과학영재학교 체육교사의 체육평가 경험에 대한 내러티브 탐구)

  • Lee, Jong-Min;Lee, Keun-Mo
    • 한국체육학회지인문사회과학편
    • /
    • v.55 no.3
    • /
    • pp.43-57
    • /
    • 2016
  • This narrative study aims to describe the experience of P.E. assessment that was conducted by P.E. teachers of Korea Science Academy of KAIST, and interpret the educational significance that was found in the process. The study participants were two P.E. teachers who were selected by decisive case sampling method. Data were collected mainly through official interviews with study participants, and through researcher's field notes, informal interviews, various minutes, students' evaluation of teaching, and emails between the researcher and study participants. Data were analyzed through inductive categorization, and to gain veracity of the study, there were integration of diverse materials, advice and suggestions of fellow researchers, continuous confirmation of study texts by study participants. Study participants, while conducting P.E. assessment in Korea Science Academy of KAIST, experienced effectiveness of evaluation such as qualitative development of P,E. classes in accordance with the simplified assessment, freedom from the chores of handling assessment results, students' improved perceptions of P.E. class, realization of safe classes without excessive competition, and the possibility of giving alternative evaluations to pass/fail system but at the same time experienced limitations such as concerns over gaining validity and reliability of P.E. evaluation, the students' attitude who take lightly of P.E. class, and the reality that teachers cannot fail students. The evaluation experiences of the two P.E teachers were educationally interpreted as encounter with good P.E. classes, invitation to P.E. class criticism, and the start of school P.E. culture that is led by students.

Intelligent VOC Analyzing System Using Opinion Mining (오피니언 마이닝을 이용한 지능형 VOC 분석시스템)

  • Kim, Yoosin;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.113-125
    • /
    • 2013
  • Every company wants to know customer's requirement and makes an effort to meet them. Cause that, communication between customer and company became core competition of business and that important is increasing continuously. There are several strategies to find customer's needs, but VOC (Voice of customer) is one of most powerful communication tools and VOC gathering by several channels as telephone, post, e-mail, website and so on is so meaningful. So, almost company is gathering VOC and operating VOC system. VOC is important not only to business organization but also public organization such as government, education institute, and medical center that should drive up public service quality and customer satisfaction. Accordingly, they make a VOC gathering and analyzing System and then use for making a new product and service, and upgrade. In recent years, innovations in internet and ICT have made diverse channels such as SNS, mobile, website and call-center to collect VOC data. Although a lot of VOC data is collected through diverse channel, the proper utilization is still difficult. It is because the VOC data is made of very emotional contents by voice or text of informal style and the volume of the VOC data are so big. These unstructured big data make a difficult to store and analyze for use by human. So that, the organization need to automatic collecting, storing, classifying and analyzing system for unstructured big VOC data. This study propose an intelligent VOC analyzing system based on opinion mining to classify the unstructured VOC data automatically and determine the polarity as well as the type of VOC. And then, the basis of the VOC opinion analyzing system, called domain-oriented sentiment dictionary is created and corresponding stages are presented in detail. The experiment is conducted with 4,300 VOC data collected from a medical website to measure the effectiveness of the proposed system and utilized them to develop the sensitive data dictionary by determining the special sentiment vocabulary and their polarity value in a medical domain. Through the experiment, it comes out that positive terms such as "칭찬, 친절함, 감사, 무사히, 잘해, 감동, 미소" have high positive opinion value, and negative terms such as "퉁명, 뭡니까, 말하더군요, 무시하는" have strong negative opinion. These terms are in general use and the experiment result seems to be a high probability of opinion polarity. Furthermore, the accuracy of proposed VOC classification model has been compared and the highest classification accuracy of 77.8% is conformed at threshold with -0.50 of opinion classification of VOC. Through the proposed intelligent VOC analyzing system, the real time opinion classification and response priority of VOC can be predicted. Ultimately the positive effectiveness is expected to catch the customer complains at early stage and deal with it quickly with the lower number of staff to operate the VOC system. It can be made available human resource and time of customer service part. Above all, this study is new try to automatic analyzing the unstructured VOC data using opinion mining, and shows that the system could be used as variable to classify the positive or negative polarity of VOC opinion. It is expected to suggest practical framework of the VOC analysis to diverse use and the model can be used as real VOC analyzing system if it is implemented as system. Despite experiment results and expectation, this study has several limits. First of all, the sample data is only collected from a hospital web-site. It means that the sentimental dictionary made by sample data can be lean too much towards on that hospital and web-site. Therefore, next research has to take several channels such as call-center and SNS, and other domain like government, financial company, and education institute.