• 제목/요약/키워드: Inflow angle

검색결과 98건 처리시간 0.027초

다수의 장애물을 가진 유동채널에서의 강제 대류에 관한 연구 (Forced Convection in a Flow Channel with Multiple Obstacles)

  • 남평우;조성환
    • 태양에너지
    • /
    • 제9권1호
    • /
    • pp.62-69
    • /
    • 1989
  • This analysis is to investigate the influence of inflow angle when cooling air flows into PC (Printed Circuit) board channels. Flow between PC board channels with heat generating blocks is assumed laminar, incompressible, two-dimensional. Geometric parameters (block spacing (S), block height (H), block width (W) and channel height (L)) are held fixed. Inflow angle variations are $-10^{\circ},\;0^{\circ},\;10^{\circ}$, where uniform heat flux per unit axial length Q (W/m) from heated block surfaces is generated. The governing equations for velocity and temperature are solved by SIMPLE (Semi-Implicit Method Pressure for Linked Equation) algorithm. Nusselt number on each block surfaces is analyzed after a numerical calculation result. The result shows that the assumption on parallel inflow (inflow angle to channel, $0^{\circ}$) to PC board channels can be used without large error even when inflow' angle is varied.

  • PDF

Theoretical investigation about the hydrodynamic performance of propeller in oblique flow

  • Hou, Lixun;Hu, Ankang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.119-130
    • /
    • 2019
  • This paper establishes an iterative calculation model for the hydrodynamic performance of propeller in oblique flow based on low order potential based surface panel method. The hydrodynamic performance of propeller is calculated through panel method which is also used to calculate the induced velocity. The slipstream of propeller is adjusted according to the inflow velocity and the induced velocity. The oblique flow is defined by the axial inflow velocity and the incident angle. The calculation results of an instance show that the thrust and torque of propeller decrease with the increase of axial inflow velocity but increase with the incident angle. The unsteadiness of loads on the propeller blade surface gets more intensified with the increases of axial inflow velocity and incident angle. However, comparing with the effect of axial inflow velocity on the unsteadiness of the hydrodynamic performance of propeller, the effect of the incident angle is more remarkable.

삼각봉을 지나는 층류유동에 대한 입구유동각도 변화의 영향 (EFFECTS OF INFLOW ANGLE ON LAMINAR FLOW PAST A TRIANGULAR CYLINDER)

  • 박태선
    • 한국전산유체공학회지
    • /
    • 제16권3호
    • /
    • pp.22-28
    • /
    • 2011
  • Laminar Flow over an equilateral triangular cylinder is studied for several inflow angles. Under an uniform flow of $Re_d$=50,75,100,125,150, the triangular cylinder is rotated by ${\theta}$=$0^{\circ}$,$15^{\circ}$,$30^{\circ}$,$45^{\circ}$,$60^{\circ}$,$75^{\circ}$,$90^{\circ}$,$105^{\circ}$. The governing equations are solved by the PISO algorithm based on the finite volume method of the unstructured grid system. The effects of the inflow angle on the vortex-shedding flows are investigated. The Strouhal number shows a minimum at ${\theta}$=$60^{\circ}$. It is closely related to the variation of pressure and flow structure induced by the movement of separation points.

유입유동에 따른 조류터빈의 성능의 변화 (A Study on the Performance of Tidal Turbine by Inflow condition)

  • 김부기;양창조;최민선
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2012년도 전기공동학술대회 논문집
    • /
    • pp.154-154
    • /
    • 2012
  • Many suggestions is offered to resolve global warming. Tidal current generation is producing power by switched tidal difference sea water horizontal fluid flow produced by tidal difference using rotor and generator. So, change the angle of inflow condition due to the entrance of efficiency are considered. We therefore investigated three dimensional flow analysis and performance evaluation using commercial ANSYS-CFX code for horizontal axis turbine. Then We also studied three dimensional flow characteristics of a rotating rotor and blade surface streamlines around a rotor. As a result, Cp was highest at TSR 5.5, especially the larger changes in the angle of inflow condition decreased efficiency.

  • PDF

하천 만곡률과 홍수량에 따른 수면경사도 산정 (Estimation of the Water Surface Slope by the Flood Discharge with River Bend Curvature)

  • 최한규;이문희;백효선
    • 산업기술연구
    • /
    • 제26권A호
    • /
    • pp.129-137
    • /
    • 2006
  • In this research, we made a one and two-dimensional analysis of numerical data collected from the bend curvature of a bended river section. According to the result from the numerical analysis, the inflow & output angle caused a water level deviation which increased with an increase of the flood discharge. From the water level deviation of our two-dimensional numerical model, we obtained the maximum slope of 6,67% when the inflow and output angle was 105 degrees and the flood discharge was 500 CMS. As for the right side, the differences with the one-dimensional numerical model were reduced when the angle was more than $90^{\circ}$. As for the left side the differences were reduced when the angle was more than $105^{\circ}$. For a river with more than 90 degrees bend curvature, a hydraulic experiment would be more appropriate than a numerical analysis.

  • PDF

우수토실에 설치된 월류수 제어를 위한 유입유량조절장치의 개선효과 (Improvements of Inflow Controller Installed in Storm Overflow Diverging Tank for CSOs Control)

  • 임봉수;박윤해;김태응
    • 한국물환경학회지
    • /
    • 제31권4호
    • /
    • pp.428-435
    • /
    • 2015
  • This study was carried out to evaluate the performance of a inflow controller for the control of combined sewer overflows (CSOs). Because of the inflow controller could be adjusted manually by predicting the maximum amount of peak flow, the mechanical adjustment of this controller was higher than the existing fixed-type controller in field application. Standardizing the relationship between the flow and the clearance and angle of an inlet cover plate on the inflow conditions can selected to the optimum conditions for the on-site. It was concluded that BOD pollutant loading at the region in which inflow controller was installed had shown the removal efficiency rate of 42%.

An approximate method for aerodynamic optimization of horizontal axis wind turbine blades

  • Ying Zhang;Liang Li;Long Wang;Weidong Zhu;Yinghui Li;Jianqiang Wu
    • Wind and Structures
    • /
    • 제38권5호
    • /
    • pp.341-354
    • /
    • 2024
  • This paper presents a theoretical method to deal with the aerodynamic performance and pitch optimization of the horizontal axis wind turbine blades at low wind speeds. By considering a blade element, the functional relationship among the angle of attack, pitch angle, rotational speed of the blade, and wind speed is derived in consideration of a quasi-steady aerodynamic model, and aerodynamic loads on the blade element are then obtained. The torque and torque coefficient of the blade are derived by using integration. A polynomial approximation is applied to functions of the lift and drag coefficients for the symmetric and asymmetric airfoils respectively, where specific expressions of aerodynamic loads as functions of the angle of attack (which is a function of pitch angle) are obtained. The pitch optimization problem is investigated by considering the maximum value problem of the instantaneous torque of a blade as a function of pitch angle. Dynamic pitch laws for HAWT blades with either symmetric or asymmetric airfoils are derived. Influences of parameters including inflow ratio, rotational speed, azimuth, and wind speed on torque coefficient and optimal pith angle are discussed.

횡월류 위어 유입각 변화에 따른 유량계수 추정 기초 연구 (A Study on the Estimation of Discharge Coefficients with Variations of Side Weir Angle)

  • 피완섭;장형준;전계원
    • 한국방재안전학회논문집
    • /
    • 제16권1호
    • /
    • pp.81-89
    • /
    • 2023
  • 최근 이상기후의 영향으로 전 지구적 온난화 및 도시화로 인해 세계적으로 기상이변이 늘어나고 있다. 도시화 및 난개발로 인한 불투수 면적의 증가 같은 문제로 홍수량이 증가함에 따라 홍수피해를 줄이기 위한 다양한 방안이 제시되고 있다. 본 연구에서는 사행하천 구간에 설치되는 횡월류 위어 유입각의 변화에 따라 3차원 CFD 모형인 FLOW-3D를 이용하여 흐름 특성과 월류량을 분석하여 횡월류 위어 유입각에 대한 수공구조물의 월류능력 평가 및 유량계수 산정을 위한 기초 연구를 수행하였다. 분석 결과, 횡월류 위어 유입각이 작을수록 횡월류부 통과 후 주수로 흐름의 수위가 감소하고 유속이 증가하였으며, 유입각이 증가할수록 수위가 상승하였고, 유속이 감소하는 경향을 보였다. 또한, 횡월류 위어 유입각이 40° 이상인 경우 직하류 유속이 상류 유속과 비교하여 감소하는 것을 확인할 수 있었다.

종합병원 병실 내 광선반과 블라인드 설치 방식에 따른 자연채광 유입 효과 연구 (A Study on the Effect of inflow Daylight according to the installation method of controlling Light Shelf and Blind in the Room of General Hospital)

  • 조주영;이효원
    • KIEAE Journal
    • /
    • 제13권4호
    • /
    • pp.3-10
    • /
    • 2013
  • This study aims to identify convenient surrounding of the hospital room to be improved by specifically focusing on light environment and to examine a change of inflow of the daylight in the hospital room by using blind and light shelf device as base data of preliminary research for comprehending the relationship between healing environment and natural day light. Simulation analysis on previous facilities and the installation of horizontal light shelf that derives the inflow of day light has been specifically referred by using ECOTECT2011 program. In case of C-facility that mostly adjoined to exterior spaces, it was shown to be closer to a proper uniformity factor when an angle was controlled on the light shelf with blind installed at the same time. However, it was not overall appropriate because of visual displeasure occurred from inflow of much day light. In conclusion, it is the form of flat surface such as H-facility that provides an effect after installing the device to derive day light. Especially, it was shown that interior day light environment was improved when installing blind and controlling the angle at the same time.

Hydrodynamic characteristics of X-Twisted rudder for large container carriers

  • Ahn, Kyoung-Soo;Choi, Gil-Hwan;Son, Dong-Igk;Rhee, Key-Pyo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권3호
    • /
    • pp.322-334
    • /
    • 2012
  • This paper shows the numerical and experimental results about the hydrodynamic characteristics of X-Twisted rudders having continuous twist of the leading edge along the span. All the results were compared with those of the semi-balanced rudder. Calculation through the Reynolds-Averaged Navier-Stokes Equation (RANSE) code with propeller sliding meshes shows large inflow angle and fast inflow velocity in the vicinity of ${\pm}0.7$ R from the shaft center, so it may cause cavitation. Also, X-Twisted rudder has relatively small inflow angles along the rudder span compared with semi-balanced rudder. For the performance validation, rudders for two large container carriers were designed and tested. Cavitation tests at the medium sized cavitation tunnel with respect to the rudder types and twisted angles showed the effectiveness of twist on cavitation and the tendency according to the twist. And the resistance, self-propulsion and manoeuvring tests were also carried out at the towing tank. As a result, in the case of X-Twisted rudder, ship speed was improved with good manoeuvring performance. Especially, it was found out that manoeuvring performance between port and starboard was well balanced compared with semi-balanced rudders.