• Title/Summary/Keyword: Inflater system

Search Result 6, Processing Time 0.02 seconds

Model testing of leakage effect due to multi-cell inflater of rapid protection system in subsea tunnel (해저터널 급속차폐시스템의 Inflater 분할구조에 따른 터널 내 차수효율에 대한 실험적 연구)

  • Yoo, Kwang-San;Lee, Ji-Hyun;Kim, Yeon-Deok;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.295-303
    • /
    • 2015
  • This paper presents the study of leakage effect due to multi-cell inflater of rapid protection system to protect the possibilities of tunnel damages by flooding threats and unusual leakage to be occurred during and after subsea tunnel construction. Particularly, this protect system should be necessary in subsea tunnel. This research concentrates the physical model tests due to several multi-cell inflater to study protection capacity of leakage between the inflater and tunnel liner. A 27:1 small scale model are used in the model tests. The leakage rate, water pressure and axial displacement of inflater are measured during the model tests. According to the results, the minium leakage rate clearly shows in the case of two-cell inflater compared with in other cases. It is concluded that the results of this research will be very useful to understand the fundamental information of inflater structure design and development the technology of tunnel protection structures in the future.

A Study on Inflation Performance Analysis and Test of A Wearable Airbag for Bikers (자전거 탑승자용 웨어러블 에어백의 팽창성능 해석 및 시험에 관한 연구)

  • Kim, Hyun Sik;Byun, Gi Sik;Baek, Woon Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.2
    • /
    • pp.22-27
    • /
    • 2019
  • Bikers can be subjected to accidents during their bicycling. Helmets are only good, if any, for their head protection. A wearable airbag can protect the human neck area if it is properly designed. This airbag system is composed of an inflater and an airbag. The inflater contains a pressurized gas cylinder and a piercing device. The airbag is an inflatable fabric surrounding the human neck. When a bicycle accident happens, a sensor captures the motion of the biker and a microcomputer sends a signal to open a valve in the inflator to supply the pressurized gas to the airbag. An important issue of this system is that the airbag should be quickly inflated to protect the human neck. This paper deals with the airbag inflation time simulation and some issues to design a wearable airbag system. Also, a prototype was tested to show its feasibility using a human dummy mounted on a running cart.

Design considerations and field applications on inflatable structure system to protect rapidly flooding damages in tunnel (해저터널 급속차폐를 위한 팽창구조체의 설계 및 현장적용에 대한 연구)

  • Kim, Hyeob;Kang, Si-On;Yoo, Kwang-San;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.161-177
    • /
    • 2017
  • This paper presents the design considerations and field applications on inflatable structure system to protect rapidly flooding damages in large section tunnel. This inflatable structure system is very valuably used to protect passively and rapidly the possibilities of tunnel damages by flooding threats and unusual leakage to be occurred during and after underground infrastructure. In particular, this system should be necessary in subsea tunnel. The predominant factors in the design of inflatable structure system are the leakage and friction characteristics between the inflater and tunnel liner. The analytical and experimental studies are performed to develop the design considerations and to examine the design parameters of the inflatable structure system. The analytical solutions are developed using membrane theory to suggest the design considerations. The relative friction tests of several fabric materials are also carried out to determine the friction characteristics according to the different friction conditions between inflater and tunnel surface. The test results show that the friction coefficients in wet surface condition are about 20% lower than the values in dry surface condition. In addition, virtual design of tunnel protection system for two virtual subsea tunnel sites which is under reviewing in Korea, is carried out based on this research. It is expected that the results of this research will be very useful to understand the inflater structure design and development the technology of tunnel protection structures in the future.

Analyses of Deployment Process and Sled Test for Designing Airbag Module (에어백 단품설계를 위한 전개과정과 승객거동해석)

  • 김헌영;이상근;신윤재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.118-128
    • /
    • 1998
  • Finite element analyses are carried out to provide results usable in the design of airbag module that consists of inflater, cushion, cover, mounting plate, etc. In the first phase, a deployment process of airbag module is analyzed to evaluate the pressure waveform of developed airbag and deployment characteristics, and is compared with the test results. Interaction between head form and inflated airbag module is investigated in the second phase. In the last stage, sled test with rigid dummy, airbag midule, driving system and car interior part are simulated to investigate the influence of airbag design factor on the behavior of dummy with seat belt. The procedures can be provided as a guideline for airbag module design and improvement of airbag module performance.

  • PDF

An experimental study on the operation mode of rapid flooding protection system in tunnel (축소모형실험을 통한 터널 내 급속침수 차폐자동화 시스템 작동형태에 대한 연구)

  • Kim, Yeon-Deok;Kong, Min-Teak;Hwang, Beoung-Hyeon;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1147-1159
    • /
    • 2018
  • This study focuses on the verification of a rapid protection automation system using an inflatable structure. The inflatable structure is an automatic rapid protection system against human and material damage when the subsea tunnel is flooded. Especially, it is essential for construction and operation of subsea tunnels. In this study, we have experimentally verified the rapid protection automation system using the inflatable structure designed for this problem. In order to verify this, a model tunnel with a 40: 1 reduction ratio was constructed, and air pressure of 0.1 bar and 0.15 bar was injected to divide the tunnel according to the expansion rate at 10 sec and 20 sec. According to the results of the study, the protection efficiency was better at 0.15 bar than 0.1 bar when the expansion structure was expanded, and the protection efficiency and influent control efficiency were different according to the pneumatic injection time of the inflating structure. As a result of this study, it was found that the higher the internal air pressure of the inflated structure and the faster the inflation of rate, the more effectively the inflated structure was inflated. As a result of this study, it is necessary to further study the wedge type structure which is useful for the storage method of expansion structure, shape and expansion derivative, inhibition of expansion structure during protection and control of inflow water.

A Study on a Wearable Smart Airbag Using Machine Learning Algorithm (머신러닝 알고리즘을 사용한 웨어러블 스마트 에어백에 관한 연구)

  • Kim, Hyun Sik;Baek, Won Cheol;Baek, Woon Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.2
    • /
    • pp.94-99
    • /
    • 2020
  • Bikers can be subjected to injuries from unexpected accidents even if they wear basic helmets. A properly designed airbag can efficiently protect the critical areas of the human body. This study introduces a wearable smart airbag system using machine learning techniques to protect human neck and shoulders. When a bicycle accident happens, a microprocessor analyzes the biker's motion data to recognize if it is a critical accident by comparing with accident classification models. These models are trained by a variety of possible accidents through machine learning techniques, like k-means and SVM methods. When the microprocessor decides it is a critical accident, it issues an actuation signal for the gas inflater to inflate the airbag. A protype of the wearable smart airbag with the machine learning techniques is developed and its performance is tested using a human dummy mounted on a moving cart.