• 제목/요약/키워드: Inflammatory markers

검색결과 388건 처리시간 0.023초

마우스 비장세포에서 Ginsenoside Rp1의 세포자멸사 유도 (Induction of apoptosis in mouse spleen cells by Ginsenoside Rp1)

  • 오영균;주홍구
    • 대한수의학회지
    • /
    • 제53권3호
    • /
    • pp.143-147
    • /
    • 2013
  • Ginsenoside Rp1 is one of ginseng saponins with chemotherapeutic activity. In this study, we investigated the effects of Rp1 on spleen cells. Spleen is a major immune organ consisted of crucial immune cells, such as T lymphocytes, B lymphocytes, natural killer cells, and some antigen-presenting cells. Although the anti-tumor potential of Rp1 was studied, the effects of Rp1 on immune cells have not investigated yet. A viability assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), flow cytometric analysis, Western blot analysis were used to detect cellular changes on Rp1-treated spleen cells. MTT assay showed that Rp1 decreased the viability of spleen cells. To further investigate the effects of Rp1 on activated spleen cells, we treated lipopolysaccharide (LPS) as a representative inflammatory agent and Rp1 on spleen cells in a combination. The surface expression levels of activation markers for lymphocytes, CD25 and CD69 were measured. Apoptotic analysis revealed the cytotoxic effects of Rp1 on both na$\ddot{i}$ve and activated cells, and the expression pattern of some apoptosis-related proteins was correlated to apoptotic events of cells. Taken together, ginsenoside Rp1 increases the cellular death of spleen cells and also inhibits the LPS-induced activation of spleen cells.

Effect of Red Ginseng and Its Representative Constituents, Ginsenosides Rg3 and Rh2, on Dextran Sulfate Sodium-induced Colitis in Mice

  • Yoo, Young-Ik;Lee, Hae-Sung;Kim, Dong-Hyun;Han, Myung-Joo
    • Food Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.262-266
    • /
    • 2009
  • To evaluate the anticolitic effect of red ginseng (RG, the steamed root of Panax ginseng CA. Meyer, Araliaceae), RG and its representative constituents, ginsenosides Rg3 and Rh2, were orally administered to dextran sulfate sodium (DSS)-induced colitic mice and inflammatory markers investigated. RG and its constituents, ginsenosides Rg3 and Rh2, inhibited colon shortening and myeloperoxidase activity induced by DSS. The ginsenosides Rg3 and Rh2 inhibited mRNA expression of interleukin (IL)-$1{\beta}$ as well as protein levels of IL-$1{\beta}$ and IL-6. These ginsenosides also inhibited the activation of a transcription nuclear factor (NF)-${\kappa}B$. Ginsenoside Rh2 was a more potent inhibitor than ginsenoside Rg3. The anticolitic effects of these ginsenosides were comparable with sulfasalazine.

정상치은열구액과 치주질환시 치은열구액의 단백질 조성비교에 관한 연구 (THE PROTEIN COMPOSITION OF GINGIVAL CREVICULAR FLUID SAMPLED FROM NORMAL SUBJECTS AND PATIENTS WITH PERIODONTAL DISEASE)

  • 김수아;이진용;김형섭
    • Journal of Periodontal and Implant Science
    • /
    • 제23권3호
    • /
    • pp.391-398
    • /
    • 1993
  • Gingival crevicular fluid (GCF) is a promising source for markers of destructive periodontal disease activity. This study was undertaken to evaluate the protein composition of GCF in varying stages of the gingival inflammatory response. GCF sampled from 26 people with clinically healthy gingiva and 18 people with periodontitis were examined via sodium dodecyl sulphate polyacrylamide gel electrophoresis(SDS/PAGE). The result were as follows. 1. Total amount of GCF protein of diseased group significantly different from that of normal group. But difference in protein concentration was not that significant. 2. In analyzing GCF with SDS/PAGE, it was suggested that albumin is used as indicator plasma protein leakage because of heavily staining bond of albumin in patients with periodontal disease. 3. In diseased group, overall bonds of protein and bands of high molecular weight protein were heavily stained. It was proved useful information on high molecular plasma protein leakage with increasing vascular permeability due to inflammation.

  • PDF

Triterpenoid-Containing Liposome by Micelle-to-Vesicle Transition and Their Biological Activities

  • Kang, Hyung-Seok;Park, Ji-Eun;Nam, Gae-Won;Han, Sang-Hoon;Chang, Ih-Seop
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book II
    • /
    • pp.319-329
    • /
    • 2003
  • Ursolic acid (UA) and oleanolic acid (OA) are pentacyclic triterpenoids which are widely distributed in plants, and their derivatives are aglycones of many naturally occurring saponins. It is known that pentacyclic acids may possibly enhance the mechanical barrier functions of cell membranes in plants. Recently, it has been reported that OA and UA have interesting biological activities on skin, such as anti-inflammatory and anti-wrinkle activities. Since triterpenoids are extremely insoluble and their solubility problem limits skin-care application, OA and UA were encapsulated in liposomes via micelle-to-vesicle transition to overcome poorly soluble property and enhance biological efficacy. Optimal molar ratio of OA to lecithin was found to exist for producing liposomes of small hydrodynamic size and liposomal suspensions without recrystallized precipitation of OA. From electron micrograph and dynamic light scattering studies, reconstituted OA-containing liposomes without severe mechanical treatment showed small hydrodynamic size about 150 nm. Wide-angle X-ray diffraction coupled with dynamic light scattering revealed that optimal amount of OA in liposome was 25.4 mole %. In biological evaluation, OA-containing liposome significantly increased filaggrin and transglutaminase as markers of keratinocyte differentiation in epidermal layer of hairless mouse, whereas ursolic acid-containing liposome did not show noticeable increase of filaggrin and transglutaminase compared to empty liposome. It is concluded that nano-scaled liposomes containing triterpenoids were spontaneously prepared by vesicular transition from mixed micelle and liposomal triterpenoids can enhance skin absorption of triterpenoid and biological efficacy.

  • PDF

Rhamnazin inhibits LPS-induced inflammation and ROS/RNS in raw macrophages

  • Kim, You Jung
    • Journal of Nutrition and Health
    • /
    • 제49권5호
    • /
    • pp.288-294
    • /
    • 2016
  • Purpose: The aim of this work was to investigate the beneficial effects of rhamnazin against inflammation, reactive oxygen species (ROS)/reactive nitrogen species (RNS), and anti-oxidative activity in murine macrophage RAW264.7 cells. Methods: To examine the beneficial properties of rhamnazin on inflammation, ROS/ RNS, and anti-oxidative activity in the murine macrophage RAW264.7 cell model, several key markers, including COX and 5-LO activities, $NO^{\cdot}$, $ONOO^-$, total reactive species formation, lipid peroxidation, $^{\cdot}O_2$ levels, and catalase activity were estimated. Results: Results show that rhamnazin was protective against LPS-induced cytotoxicity in macrophage cells. The underlying action of rhamnazin might be through modulation of ROS/RNS and anti-oxidative activity through regulation of total reactive species production, lipid peroxidation, catalase activity, and $^{\cdot}O_2$, $NO^{\cdot}$, and $ONOO^{\cdot}$ levels. In addition, rhamnazin down-regulated the activities of pro-inflammatory COX and 5-LO. Conclusion: The plausible action by which rhamnazin renders its protective effects in macrophage cells is likely due to its capability to regulate LPS-induced inflammation, ROS/ RNS, and anti-oxidative activity.

Combined Effects of Multiple Endoplasmic Reticulum Stresses on Cytokine Secretion in Macrophage

  • Kim, Hye-Min;Do, Chang-Hee;Lee, Dong-Hee
    • Biomolecules & Therapeutics
    • /
    • 제20권3호
    • /
    • pp.346-351
    • /
    • 2012
  • Cells show various stress signs when they are challenged with severe physiological problems. Majority of such cellular stresses are conveyed to endoplasmic reticulum (ER) and unfolded protein response (UPR) serves as typical defense mechanism against ER stress. This study investigated an interaction between ER stress agents using macropage cell line Raw 264.7. When activated by lipopolysaccharide (LPS), the cell lines showed typical indicators of ER stress. Along with molecular chaperones, the activation process leads to the production of additional inflammatory mediators. Following activation, the macrophage cell line was further treated with TUN and characterized in terms of chaperone expression and cytokine secretion. When treated with TUN, the activated macrophage cell leads to increased secretion of IL-6 although expression of ER stress markers, GRP94 and GRP78 increased. The secretion of cytokines continued until the addition of BFA which inhibits protein targeting from ER to Golgi. However, secretion of cytokines was ceased upon dual treatments with BFA and TG. This result strongly implies that cells may differently deal with various polypeptides depending on the urgency in cellular function under ER stress. Considering IL-6 is one of the most important signal molecules in macrophage, the molecule might be able to circumvent ER stress and UPR to reach its targeting site.

Rapid deterioration of preexisting renal insufficiency after autologous mesenchymal stem cell therapy

  • Kim, Jun-Seop;Lee, Jong-Hak;Kwon, Owen;Cho, Jang-Hee;Choi, Ji-Young;Park, Sun-Hee;Kim, Chan-Duck;Kim, Yong-Jin;Kim, Yong-Lim
    • Kidney Research and Clinical Practice
    • /
    • 제36권2호
    • /
    • pp.200-204
    • /
    • 2017
  • Administration of autologous mesenchymal stem cells (MSCs) has been shown to improve renal function and histological findings in acute kidney injury (AKI) models. However, its effects in chronic kidney disease (CKD) are unclear, particularly in the clinical setting. Here, we report our experience with a CKD patient who was treated by intravenous infusion of autologous MSCs derived from adipose tissue in an unknown clinic outside of Korea. The renal function of the patient had been stable for several years before MSC administration. One week after the autologous MSC infusion, the preexisting renal insufficiency was rapidly aggravated without any other evidence of AKI. Hemodialysis was started 3 months after MSC administration. Renal biopsy findings at dialysis showed severe interstitial fibrosis and inflammatory cell infiltration, with a few cells expressing CD34 and CD117, 2 surface markers of stem cells. This case highlights the potential nephrotoxicity of autologous MSC therapy in CKD patients.

The Effects of Bee Venom Pharmacopuncture on Middle Cerebral Artery Occlusion Ischemic Cerebral Damage in Mice

  • Lee, Ji-In;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • 제36권4호
    • /
    • pp.220-229
    • /
    • 2019
  • Background: The therapeutic potential of Bee Venom Pharmacopuncture (BVP) on acute ischemic cerebral infraction was determined in mice in vivo and in vitro. Methods: Analysis of acute ischemic cerebral infraction was performed using 7 week old male ICR mice (n = 20) and microglial BV-2 cells. Bee venom ($5{\mu}g/kg$) was injected into the caudal vein of middle cerebral artery occlusion (MCAo) mice (1 hour after reperfusion, 3 hours after MCAo probe insertion), and also used to treat LPS-stimulated microglial BV-2 cells (1, 2, $5{\mu}g/mL$). Markers of inflammation were monitored. Results: NO declined statistically significantly in BVP treated MCAo mice compared to the untreated MCAo group (p < 0.05). Compared to the MCAo group, the BVP-treated MCAo group showed a decreased production volume of malondialdehyde, but an increased glutathione/oxidized glutathione ratio. Compared to the untreated MCAo group, the BVP treated MCAo group showed a statistically significant decline in TNF and $IL-1{\beta}$ levels (p < 0.05). BVP inhibited the levels of p65, p50, $p-I{\kappa}B-{\alpha}$, and levels of p-ERK1/2, p-JNK2, p-P38 declined. Conclusion: BVP is effective at dampening the inflammatory response in vivo and in vitro and may supplement rt-PA treatment.

Andrographolide의 Extracellular Signal-regulated Kinase Pathway (ERK)를 통한 상피 세포 줄기세포능 향상 (Andrographolide Promotes the Stemness of Epidermal Cells through the Extracellular Signal-regulated Kinase (ERK) Pathway)

  • 유지영;노경백;신승우;박덕훈;정은선
    • 생약학회지
    • /
    • 제50권1호
    • /
    • pp.18-24
    • /
    • 2019
  • Andrographolide, the main compound of Andrographis paniculata (A. paniculata), shows various biological properties including anti-viral, anti-inflammatory, anti-diabetic, and hepatoprotective effects. Our previous study has shown that A. paniculata extract exerts antiaging effects by activation of stemness in epidermal stem cells (EpSCs). In this study, we investigated the effect of andrographolide as a main compound of A. paniculata on EpSCs and its mechnism of action using several in vitro assays. Andrographolide increased the proliferation of EpSCs and induced cell cycle progression. Additionally, andrographolide increased VEGF production and the expression of stem cell markers integrin ${\beta}1$ and p63. Furthermore, phosphorylation levels of extracellular signal-regulated kinase 1/2 (ERK1/2), S6 ribosomal protein (S6RP) and Akt were increased by andrographolide. Taken together, these results indicate that andrographolide-induced proliferation of EpSCs is mediated by the ERK1/2, Akt-dependent pathway with increased production of VEGF and upregulated stemness through integrin ${\beta}1$ and p63.

C-Reactive Protein a Promising Biomarker of COVID-19 Severity

  • Fazal, Muntaha
    • 대한임상검사과학회지
    • /
    • 제53권3호
    • /
    • pp.201-207
    • /
    • 2021
  • The 2019 coronavirus outbreak poses a threat to scientific, societal, financial, and health resources. The complex pathogenesis of severe acute respiratory syndrome coronavirus centers on the unpredictable clinical progression of the disease, which may evolve abruptly and result in critical and life-threatening clinical complications. Effective clinical laboratory biomarkers that can classify patients according to risk are essential for ensuring timely treatment, and an analysis of recently published studies found cytokine storm and coagulation disorders were leading factors of severe COVID-19 complications. The following inflammatory, biochemical, and hematology biomarkers markers have been identified in COVID-19 patients; neutrophil to lymphocyte ratio, c-reactive protein, procalcitonin, urea, liver enzymes, lactate dehydrogenase, serum amyloid A, cytokines, d-dimer, fibrinogen, ferritin, troponin, creatinine kinase, and lymphocyte, leukocyte, and platelet counts. These factors are predictors of disease severity and some are involved in the pathogenesis of COVID-19. CRP is an acute-phase, non-specific serological biomarker of inflammation and infection and is related to disease severities and outcomes. In the present study, CRP levels were found to rise dramatically among COVID-19 patients, and our findings suggest CRP could be utilized clinically to predict COVID-19 prognosis and severity even before disease progression and the manifestation of clinical symptoms.