• Title/Summary/Keyword: Inflammatory factors

Search Result 934, Processing Time 0.03 seconds

Anti-inflammatory effect of CGT in atopic dermatitis model mice (아토피피부염을 유발한 마우스에서 청기해독탕의 항염증 효과)

  • Sueng, Yun-Chel
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.361-368
    • /
    • 2014
  • In order to investigate the effect of CGT on atopic dermatitis, various anti-inflammatory factors were studied. In-vitro, inflammatory mediators, such as MTT and nitric oxide and ROS were detected after the addition of LPS with or without CGT in RAW 264.7 cells. In-vivo, in order to verify the effectiveness of CGT in atopic dermatitis animal model, its role in inflammation factors and histological changes were observed in NC/Nga mice. CGT showed cell viability of 100% or higher in all concentration in RAW 264.7 cells. CGT inhibited LPS-induced productions of inflammatory mediators nitric oxide and antioxidant activity reactive oxygen species production in RAW 264.7 cells. CGT treated group showed significant decrease in serum of the expression of IL-$1{\beta}$, IL-6 and TNF-${\alpha}$ by 53%, 43% and 57% respectively. And CGT treated group showed decrease in serum of the expression of IgE by 56% respectively. Also, infiltration of adipocytes into skin was suppressed and the thickness of epidermis and dermis were relatively decreased in the CGT treated group. As a result, CGT has an anti-inflammatory effects in NC/Nga mouse. Thus, these results suggested a beneficial effect of CGT in treatment with Atopic dermatitis and inflammatory.

Anti-inflammatory effect of Baecksunpijibujabokhap-bang in Atopic dermatitis model mice (아토피 피부염을 유발한 마우스에서 백선피지부자복합방의 항염증 효과)

  • Sim, Boo-Yong;Kim, Sung-Hwan;Kim, Dong-Hee
    • The Korea Journal of Herbology
    • /
    • v.29 no.3
    • /
    • pp.51-58
    • /
    • 2014
  • Objectives : In order to investigate the efficacy of BJBB on atopic dermatitis, various anti-inflammatory factors were studied. Methods : In-vitro, inflammatory mediators, such as MTT and nitric oxide were detected after the addition of LPS with or without BJBB in Raw 264.7 cells. In-vivo, in order to verify the effectiveness of BJBB in atopic dermatitis animal model, its role in inflammation factors and histological changes were observed in NC/Nga mice. Results : BJBB showed cell viability of 100% or higher in all concentration in Raw 264.7 cells. BJBB inhibited LPS-induced productions of inflammatory mediators nitric oxide in RAW 264.7cells. BJBB treated group showed significant decrease in the expression of IL-1b, IL-6 and TNF-a by 40%, 80% and 44% respectively. Also the group showed decrease in the transcription of IL-1b, IL-6 and TNF-a mRNA in spleen by 41%, 93% and 39% respectively. BJBB treated group showed significant decrease in WBC, neutrophil, lympocyte and monocytes immune cell ratio in blood by 54%, 63%, 57% and 86% respectively. BJBB treated group showed decrease in the expression of IgG by 39% respectively. Also, infiltration of adipocytes into skin was suppressed and the thickness of epidermis and dermis were relatively decreased in the BJBB treated group. Conclusion : BJBB has an anti-inflammatory effects in NC/Nga mouse. Thus, these results suggested a beneficial effect of BJBB in treatment with Atopic dermatitis and inflammatory.

Beauvericin, a cyclic peptide, inhibits inflammatory responses in macrophages by inhibiting the NF-κB pathway

  • Yoo, Sulgi;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.4
    • /
    • pp.449-456
    • /
    • 2017
  • Beauvericin (BEA), a cyclic hexadepsipeptide produced by the fungus Beauveria bassiana, is known to have anti-cancer, anti-inflammatory, and anti-microbial actions. However, how BEA suppresses macrophage-induced inflammatory responses has not been fully elucidated. In this study, we explored the anti-inflammatory properties of BEA and the underlying molecular mechanisms using lipopolysaccharide (LPS)-treated macrophage-like RAW264.7 cells. Levels of nitric oxide (NO), mRNA levels of transcription factors and the inflammatory genes inducible NO synthase (iNOS) and interleukin (IL)-1, and protein levels of activated intracellular signaling molecules were determined by Griess assay, semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), luciferase reporter gene assay, and immunoblotting analysis. BEA dose-dependently blocked the production of NO in LPS-treated RAW264.7 cells without inducing cell cytotoxicity. BEA also prevented LPS-triggered morphological changes. This compound significantly inhibited nuclear translocation of the $NF-{\kappa}B$ subunits p65 and p50. Luciferase reporter gene assays demonstrated that BEA suppresses MyD88-dependent NF-${\kappa}B$ activation. By analyzing upstream signaling events for $NF-{\kappa}B$ activation and overexpressing Src and Syk, these two enzymes were revealed to be targets of BEA. Together, these results suggest that BEA suppresses $NF-{\kappa}B$-dependent inflammatory responses by suppressing both Src and Syk.

Modulation of Inflammatory Pathways and Adipogenesis by the Action of Gentisic Acid in RAW 264.7 and 3T3-L1 Cell Lines

  • Kang, Min-jae;Choi, Woosuk;Yoo, Seung Hyun;Nam, Soo-Wan;Shin, Pyung-Gyun;Kim, Keun Ki;Kim, Gun-Do
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1079-1087
    • /
    • 2021
  • Gentisic acid (GA), a benzoic acid derivative present in various food ingredients, has been shown to have diverse pharmaceutical activities such as anti-carcinogenic, antioxidant, and hepatoprotective effects. In this study, we used a co-culture system to investigate the mechanisms of the anti-inflammatory and anti-adipogenic effects of GA on macrophages and adipocytes, respectively, as well as its effect on obesity-related chronic inflammation. We found that GA effectively suppressed lipopolysaccharide-stimulated inflammatory responses by controlling the production of nitric oxide and pro-inflammatory cytokines and modulating inflammation-related protein pathways. GA treatment also inhibited lipid accumulation in adipocytes by modulating the expression of major adipogenic transcription factors and their upstream protein pathways. Furthermore, in the macrophage-adipocyte co-culture system, GA decreased the production of obesity-related cytokines. These results indicate that GA possesses effective anti-inflammatory and anti-adipogenic activities and may be used in developing treatments for the management of obesity-related chronic inflammatory diseases.

C-Reactive Protein Signaling Pathways in Tumor Progression

  • Eun-Sook Kim;Sun Young Kim;Aree Moon
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.473-483
    • /
    • 2023
  • Many cancers arise from sites of chronic inflammation, which creates an inflammatory microenvironment surrounding the tumor. Inflammatory substances secreted by cells in the inflammatory environment can induce the proliferation and survival of cancer cells, thereby promoting cancer metastasis and angiogenesis. Therefore, it is important to identify the role of inflammatory factors in cancer progression. This review summarizes the signaling pathways and roles of C-reactive protein (CRP) in various cancer types, including breast, liver, renal, and pancreatic cancer, and the tumor microenvironment. Mounting evidence suggests the role of CRP in breast cancer, particularly in triple-negative breast cancer (TNBC), which is typically associated with a worse prognosis. Increased CRP in the inflammatory environment contributes to enhanced invasiveness and tumor formation in TNBC cells. CRP promotes endothelial cell formation and angiogenesis and contributes to the initiation and progression of atherosclerosis. In pancreatic and kidney cancers, CRP contributes to tumor progression. In liver cancer, CRP regulates inflammatory responses and lipid metabolism. CRP modulates the activity of various signaling molecules in macrophages and monocytes present in the tumor microenvironment, contributing to tumor development, the immune response, and inflammation. In the present review, we overviewed the role of CRP signaling pathways and the association between inflammation and cancer in various types of cancer. Identifying the interactions between CRP signaling pathways and other inflammatory mediators in cancer progression is crucial for understanding the complex relationship between inflammation and cancer.

New Radiolytic Cyclization Products, Phlorocyclin and Isophlorocyclin Exhibit Anti-inflammatory Effects in LPS-stimulated Macrophages

  • Tae Hoon Kim
    • Journal of Radiation Industry
    • /
    • v.18 no.1
    • /
    • pp.63-70
    • /
    • 2024
  • Phlorocyclin (PC) and isophorocyclin (IPC) are rare benzofuran derivaitves obtained from the representive dihydrochalcone glucoside, phloridzin (PZ) and are a type of neolignan backbone with a potential anti-glycative agents. However, research related to the enhancement of biological functionallites to inflammation of the newly converted products is very limited. This research was directed with the purpose of discovery more effective anti-inflammatory agents in macrophages of newly radiolysis products PC and IPC. The anti-inflammatory capacities of the characterized products in RAW 264.7 and DH82 macrophages treated with lipopolysaccharide (LPS) to stimulate an inflammation response were examined. The pro-inflammatory factors such as prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), nitric oxide (NO), interleukin-6 (IL-6), and IL-10, without cytotoxicity in LPS-stimulated macrophages, were significantly inhibited after treatment with PC and IPC, when compared to PZ. Moreover, PC and IPC decreased the appearance of cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS) proteins in macrophages. The cyclization products modified by radiolysis showed the greatest anti-inflammatory effects in macrophage cells, indicating PC and IPC are a potential candidate for use in anti-inflammatory agents.

Anti-Inflammatory Effects of Paraprobiotic Lactiplantibacillus plantarum KU15122 in LPS-Induced RAW 264.7 Cells

  • Hye-Won Lee;Hee-Su Jung;Na-Kyoung Lee;Hyun-Dong Paik
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.7
    • /
    • pp.1491-1500
    • /
    • 2024
  • Inflammation is a biodefense mechanism that provides protection against painful conditions such as inflammatory bowel disease, other gastrointestinal problems, and irritable bowel syndrome. Paraprobiotics have probiotic characteristics of intestinal modulation along with merits of safety and stability. In this study, heat-killed Lactiplantibacillus plantarum KU15122 (KU15122) was investigated for its anti-inflammatory properties. KU15122 was subjected to heat-killed treatment for enhancement of its safety, and its concentration was set at 8 log CFU/mL for conducting different experiments. Nitric oxide production was most remarkably reduced in the KU15122 group, whereas it was increased in the LPS-treated group. In RAW 264.7 cells, KU15122 inhibited the expression of inducible nitric oxide synthase, cyclooxygenase-2, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. ELISA revealed that among the tested strains, KU15122 exhibited the most significant reduction in PGE2, IL-1β, and IL-6. Moreover, KU15122 inhibited various factors involved in the nuclear factor-kappa B, activator protein-1, and mitogen-activated protein kinase pathways. In addition, KU15122 reduced the generation of reactive oxygen species. The anti-inflammatory effect of KU15122 was likely attributable to the bacterial exopolysaccharides. Conclusively, KU15122 exhibits anti-inflammatory potential against inflammatory diseases.

Effect of blended protein nutritional support on reducing burn-induced inflammation and organ injury

  • Yu, Yonghui;Zhang, Jingjie;Wang, Jing;Wang, Jing;Chai, Jiake
    • Nutrition Research and Practice
    • /
    • v.16 no.5
    • /
    • pp.589-603
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Previous studies have reported that protein supplementation contributes to the attenuation of inflammation. Serious trauma such as burn injury usually results in the excessive release of inflammatory factors and organs dysfunction. However, a few reports continued to focus on the function of protein ingestion in regulating burn-induced inflammation and organ dysfunction. MATERIALS/METHODS: This study established the rat model of 30% total body surface area burn injury, and evaluated the function of blended protein (mixture of whey and soybean proteins). Blood routine examination, inflammatory factors, blood biochemistry, and immunohistochemical assays were employed to analyze the samples from different treatment groups. RESULTS: Our results indicated a decrease in the numbers of white blood cells, monocytes, and neutrophils in the burn injury group administered with the blended protein nutritional support (Burn+BP), as compared to the burn injury group administered normal saline supplementation (Burn+S). Expressions of the pro-inflammatory factors (tumor necrosis factor-α and interleukin-6 [IL-6]) and chemokines (macrophage chemoattractant protein-1, regulated upon activation normal T cell expressed and secreted factor, and C-C motif chemokine 11) were dramatically decreased, whereas anti-inflammatory factors (IL-4, IL-10, and IL-13) were significantly increased in the Burn+BP group. Kidney function related markers blood urea nitrogen and serum creatinine, and the liver function related markers alanine transaminase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase were remarkably reduced, whereas albumin levels were elevated in the Burn+BP group as compared to levels obtained in the Burn+S group. Furthermore, inflammatory cells infiltration of the kidney and liver was also attenuated after burn injury administered with blended protein supplementation. CONCLUSIONS: In summary, nutritional support with blended proteins dramatically attenuates the burn-induced inflammatory reaction and protects organ functions. We believe this is a new insight into a potential therapeutic strategy for nutritional support of burn patients.

Anti-inflammatory Effect of Water Extract from Tuna Heart on Lipopolysaccharide-induced Inflammatory Responses in RAW 264.7 Cells (Lipopolysaccharide로 유도된 RAW 264.7 세포에 대한 참치심장 물 추출물의 항염증 효과)

  • Kim, Min-Ji;Bae, Nan-Young;Kim, Koth-Bong-Woo-Ri;Park, Ji-Hye;Park, Sun-Hee;Cho, Young-Je;Ahn, Dong-Hyun
    • KSBB Journal
    • /
    • v.30 no.6
    • /
    • pp.326-331
    • /
    • 2015
  • The anti-inflammatory effect of tuna heart water extract (THWE) was investigated using lipopolysaccharide-induced inflammatory response in this study. Anti-inflammatory effect was detected by the cell proliferation and the production levels of nitric oxide, pro-inflammatory cytokines such as interleukin-6 (IL-6), IL-$1{\beta}$, and tumor necrosis factor-alpha. As a result, there were no cytotoxic effects on proliferation of macrophages treated with THWE compared to the control. The production of pro-inflammatory cytokines was remarkably suppressed compared with that of the LPS only group. These results suggest that THWE exerts the anti-inflammatory property by inhibiting production of inflammatory factors and may be a potential material for anti-inflammatory therapy.

Predictors of Small Bowel Transit Time for Capsule Endoscopy in Children with Inflammatory Bowel Disease

  • Itsuhiro Oka;Rie Funayama;Hirotaka Shimizu;Ichiro Takeuchi;Shuko Nojiri;Toshiaki Shimizu;Katsuhiro Arai
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.26 no.4
    • /
    • pp.181-192
    • /
    • 2023
  • Purpose: The development of assistive devices has allowed for the performance of capsule endoscopy in children. Anticipating the capsule's transit time could affect the efficacy of the investigation and potentially minimize the fasting period. This study determined the predictors of small bowel transit time for small-bowel capsule endoscopy in children and adolescents with inflammatory bowel disease. Methods: We retrospectively examined children and adolescents with inflammatory bowel disease who underwent capsule endoscopy by the age 18 at a Japanese tertiary care children's hospital. Small bowel transit time predictors were analyzed using multiple regression with explanatory variables. Results: Overall, 92 patients, aged 1-17 years, with inflammatory bowel disease (63 Crohn's disease and 29 ulcerative colitis cases) were examined for factors affecting small bowel transit time. In the simple regression analysis, diagnosis, age, height, weight, serum albumin, general anesthesia, and small intestine lesions were significantly associated with small bowel transit time. In the multiple regression analyses, serum albumin (partial regression coefficient: -58.9, p=0.008), general anesthesia (partial regression coefficient: 127, p<0.001), and small intestine lesions (partial regression coefficient: 30.1, p=0.037) showed significant associations with small bowel transit time. Conclusion: Hypoalbuminemia, the use of general anesthesia for endoscopic delivery of the capsule, and small intestine lesions appeared to be predictors of prolonged small bowel transit time in children and adolescents with inflammatory bowel disease. Expecting the finishing time may improve examination with a fasting period reduction, which benefits both patients and caregivers.