• 제목/요약/키워드: Infinite series

검색결과 235건 처리시간 0.021초

MODULAR TRANSFORMATION FORMULAE COMING FROM GENERALIZED NON-HOLOMORPHIC EISENSTEIN SERIES AND INFINITE SERIES IDENTITIES

  • Lim, Sung Geun
    • 호남수학학술지
    • /
    • 제43권2호
    • /
    • pp.221-237
    • /
    • 2021
  • B. C. Berndt has found modular transformation formulae for a large class of functions coming from generalized Eisenstein series. Using those formulae, he established a lot of infinite series identities, some of which explain many infinite series identities given by Ramanujan. Continuing his work, the author proved a lot of new infinite series identities. Moreover, recently the author found transformation formulae for a class of functions coming from generalized non-holomorphic Eisenstein series. In this paper, using those formulae, we evaluate a few new infinite series identities which generalize the author's previous results.

SOME INFINITE SERIES IDENTITIES

  • Lim, Sung-Geun
    • Korean Journal of Mathematics
    • /
    • 제20권4호
    • /
    • pp.451-461
    • /
    • 2012
  • B.C. Berndt has established many relations between various infinite series using a transformation formula for a large class of functions, which comes from a more general class of Eisenstein series. In this paper, continuing his study, we find some infinite series identities.

INFINITE SERIES RELATION FROM A MODULAR TRANSFORMATION FORMULA FOR THE GENERALIZED EISENSTEIN SERIES

  • Lim, Sung-Geun
    • 충청수학회지
    • /
    • 제25권2호
    • /
    • pp.299-312
    • /
    • 2012
  • In 1970s, B. C. Berndt proved a transformation formula for a large class of functions that includes the classical Dedekind eta function. From this formula, he evaluated several classes of infinite series and found a lot of interesting infinite series identities. In this paper, using his formula, we find new infinite series identities.

무한급수의 총합 가능성과 후세인 보르에 관하여 (On the Summability of Infinite Series and Hüseyin Bor)

  • 이정오
    • 한국수학사학회지
    • /
    • 제30권6호
    • /
    • pp.353-365
    • /
    • 2017
  • In general, there is summability among the mathematical tools that are the criterion for the convergence of infinite series. Many authors have studied on the summability of infinite series, the summability of Fourier series and the summability factors. Especially, $H{\ddot{u}}seyin$ Bor had published his important results on these topics from the beginning of 1980 to the end of 1990. In this paper, we investigate the minor academic genealogy of teachers and pupils from Fourier to $H{\ddot{u}}seyin$ Bor in section 2. We introduce the $H{\ddot{u}}seyin$ Bor's major results of the summability for infinite series from 1983 to 1997 in section 3. In conclusion, we summarize his research characteristics and significance on the summability of infinite series. Also, we present the diagrams of $H{\ddot{u}}seyin$ Bor's minor academic genealogy from Fourier to $H{\ddot{u}}seyin$ Bor and minor research lineage on the summability of infinite series.

무한급수의 이해에 대한 연구 (A study on understanding of infinite series)

  • 오혜영
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제34권3호
    • /
    • pp.355-372
    • /
    • 2020
  • 무한급수 개념은 학부의 전공 수학 교육과정의 중요한 주제이다. 여러 세기 동안 그것은 학습자에게 직관에 반대되는 장애를 제공했을 뿐만 아니라 해석학 연구의 중심적 역할을 해 왔다. 수학의 역사에서 무한급수 개념에 대한 이해가 미적분학 발달의 기초가 되었듯이 현재의 학생들에게 무한급수 개념에 대한 이해는 전공 수학을 학습하는 데 꼭 필요하다. 무한합의 개념을 가진 학생 대부분은 무한급수의 수렴 판정 같은 수학적 내용은 어려워하지 않으나 무한급수 개념을 부분합의 열을 이용해서 구성하는 것은 어려워한다. 이에 본 연구에서는 무한급수 개념을 구성하는 방법을 APOS 이론과 발생적 분해의 관점에서 부분합 스키마를 이용하여 분석하고자 한다. 질적 연구를 통해 급수 개념의 구성 방법을 점검해서 무한급수 지도 개선에 대한 유용한 교육적 시사점을 얻고자 한다.