• Title/Summary/Keyword: Infinite body

Search Result 116, Processing Time 0.025 seconds

A Study on the development of Tuna Purse Seiner (참치 선망 어선의 선형개발에 관한 연구)

  • 김인철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.335-342
    • /
    • 1999
  • The purpose of present research is to develop and efficient numerical method for the calculation of potential flow and predict the wave-making resistance for the application to ship design of tuna purse seiner. Havelock was considered the wave resistance of a post extending vertically downwards through the water from the surface, its section by a horizontal plane being the same at all depths and having its breadth small compared with its length. This enables us to elucidate certain points of interest in ship resistance. However, the ship has not infinite draft. So, the problem which is investigated ind detail in this paper is the wave resistance of a mathematical quadratic model in a uniform stream. The paper deals with the numerical calculation of potential flow around the series 60 with forward velocity by the new slender ship theory. This new slender ship theory is based on the asymptotic expression of the Kelvin-source, distributed over the small matrix at each transverse section so as to satisfy the approximate hull boundary condition due to the assumption of slender body. The numerical results using the panel shift method and finite difference method are compared with the experimental results for wigley mono hull. There are no differences in the wave resistance. However, it costs much time to compute not only wave resistance but also wave pattern over some range of Froude numbers. More improvements are strongly desired in the numerical procedure.

  • PDF

Differential Expression of TPX2 upon Differentiation of Human Embryonic Stem Cells

  • Noh, Hye-Min;Choi, Seong-Jun;Kim, Se-Hee;Kim, Kye-Seong;Kim, Jin-Kyeoung
    • Reproductive and Developmental Biology
    • /
    • v.31 no.4
    • /
    • pp.221-226
    • /
    • 2007
  • Embryonic stem (ES) cells are known to have an infinite proliferation and pluripotency that are associated with complex processes. The objective of this study was to examine expression of genes differentially regulated during differentiation of human ES cells by suppression subtractive hybridization (SSH). Human ES cells were induced to differentiate into neural precursor cells via embryoid body. Neural precursor cells were isolated physically based on morphological criteria. Immunocytochemical analysis showed expression of pax6 in neural precursor cells, confirming that the isolated cells were neural precursor cells. Undifferentiated human ES cells and neural precursor cells were subject to the SSH. TPX2 (Targeting Protein for Xklp2 (Xenopus centrosomal kinesin-like protein 2)) was identified, cloned and analyzed during differentiation of human ES cells into neural lineages. Expression of TPX2 was gradually down-regulated in embryoid bodies and neural precursor cells relative to undifferentiated ES cells. Targeting Protein for Xklp2 has been shown to be involved in cell division by interaction with microtubule development in cancer cells. Taken together, result of this study suggests that TPX2 may be involved in proliferation and differentiation of human ES cells.

A frictionless contact problem for two elastic layers supported by a Winkler foundation

  • Birinci, Ahmet;Erdol, Ragip
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.331-344
    • /
    • 2003
  • The plane contact problem for two infinite elastic layers whose elastic constants and heights are different is considered. The layers lying on a Winkler foundation are acted upon by symmetrical distributed loads whose lengths are 2a applied to the upper layer and uniform vertical body forces due to the effect of gravity in the layers. It is assumed that the contact between two elastic layers is frictionless and that only compressive normal tractions can be transmitted through the interface. The contact along the interface will be continuous if the value of the load factor, ${\lambda}$, is less than a critical value. However, interface separation takes place if it exceeds this critical value. First, the problem of continuous contact is solved and the value of the critical load factor, ${\lambda}_{cr}$, is determined. Then, the discontinuous contact problem is formulated in terms of a singular integral equation. Numerical solutions for contact stress distribution, the size of the separation areas, critical load factor and separation distance, and vertical displacement in the separation zone are given for various dimensionless quantities and distributed loads.

Force Manipulability Analysis of Multi-Legged Walking Robot (다족 보행로봇의 동적 조작성 해석)

  • 조복기;이지홍
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.350-356
    • /
    • 2004
  • This paper presents a farce manipulability analysis of multi-legged walking robots, which calculates force or acceleration workspace attainable from joint torque limits of each leg. Based on the observation that the kinematic structure of the multi-legged walking robots is basically the same as that of multiple cooperating robots, we derive the proposed method of analyzing the force manipulability of walking robot. The force acting on the object in multiple cooperating robot systems is taken as reaction force from ground to each robot foot in multi-legged walking robots, which is converted to the force of the body of walking robot by the nature of the reaction force. Note that each joint torque in multiple cooperating robot systems is transformed to the workspace of force or acceleration of the object manipulated by the robots in task space through the Jacobian matrix and grasp matrix. Assuming the torque limits are given in infinite norm-sense, the resultant dynamic manipulability is derived as a polytope. The validity of proposed method is verified by several examples, and the proposed method is believed to be useful for the optimal posture planning and gait planning of walking robots.

Study about Utilizing the Wedding Dress Virtual Fitting Application Content (웨딩드레스 버추얼 피팅을 위한 애플리케이션 콘텐츠 활용 연구)

  • O, Ji-Hye;Lee, In-Seong
    • Journal of the Korean Society of Costume
    • /
    • v.62 no.6
    • /
    • pp.139-153
    • /
    • 2012
  • To prolong the rapid progress of IT, it is necessary to develop contents through IT convergence among the existing goods & service and process areas to create new added-values. In particular, the wedding dress industry has infinite potential in utilizing various contents like virtual fitting by connecting with newly compelling IT areas such as smart phones, Augmented Reality (AR), and application contents. In the meantime, a large scale of the wedding industry has gained global competitiveness due to consulting expertise and the influence of the Korean Wave, whereas most small-sized wedding dress shops in Korea fall short of developing wedding dress designs and receiving relevant information. Accordingly, the purpose of this study was to help brides who have difficulties in choosing a wedding dress by decreasing their time and effort by providing wedding dress designs and information, according their desired image, body type, and circumstances through the utilization of virtual fitting application contents. Not only that, this study aims to diversify and specialize in wedding information and to help users to set a guideline for wedding dresses that are most suitable for them. Moreover, this study has an academic meaning in proposing an interdisciplinary convergence research model through the study of wedding dress design development, AR, and application contents utilization.

DISPOSAL OF FAR-FIELD VORTEX PARTICLES FOR LONG-TERM SIMULATIONS IN PENALIZED VICMETHOD (Penalized VIC 방법에서 장시간 유동 해석을 위한 원거리 와도 입자 처리)

  • Jo, E.B.;Lee, S.-J.;Suh, J.-C.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.51-58
    • /
    • 2017
  • A penalized VIC method offers an efficient hybrid particle-mesh algorithm to simulate an incompressible viscous flow passing a solid body in an infinite domain. In this manner, the computational domain needs to be restricted to a relatively small region to reduce computational cost which would be very high in case of using a large domain. In this paper, we present how to dispose of far-field particles to avoid an unnecessarily large computational domain. The present approach constraints expansion of the domain and thus prevents the incremental computational cost. To validate the numerical approach, a flow around an impulsively started sphere was simulated for Reynolds numbers of 100 and 1000.

Nonlinear analysis of the effects on the brain waves of the stimulation on specific area of the sole of the foot (발바닥 특정 부위 자극이 뇌파에 미치는 효과에 대한 비선형 분석)

  • Oh, Yeong-seon;Oh, Min-seok;Song, Tae-won
    • Journal of Haehwa Medicine
    • /
    • v.10 no.1
    • /
    • pp.365-374
    • /
    • 2001
  • The brain is one of the most complex systems in nature. Brain waves, or the "EEG", are electrical signals that can be recorded from the brain, either directly or through the scalp. The kind of brain wave recorded depends on the behavior of the animal, and is the visible evidence of the kind of neuronal (brain cell) processing necessary for that behavior. But, EEG had been considered as a virtually infinite-dimensional random signal. However, nonlinear dynamics light on dynamical aspects of the human EEG. The methods of nonlinear dynamics provide excellent tolls for the study of multi-variable, complex system such as EEG. In this study, 20 persons seperated in 2 groups were examined with EEG, one group stimulated on specific area of the sole of the foot with footbed inside the shoes. This experiment resulted in at the group stimulated on specific area of the sole of the foot correlation dimension of P4 and O1 channels increased significantly. Therefore. we obserbed that stimulation on specific area of the body had a constant effections on the specific channels.

  • PDF

Hydrodynamic Characteristics of Two-dimensional Wave-energy Absorbers (이차원(二次元) 부유식(浮游式) 파랑발전기(波浪發電器)의 유체역학적(流體力學的) 특성(特性))

  • Moo-Hyun,Kim;H.S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.1
    • /
    • pp.47-58
    • /
    • 1983
  • A study is made, in the framework of linear potential theory, to investigate the hydrodynamic characteristics of two-dimensional wave-energy absorbers as like the Salter's duck and an oscillating cam with Lewis-form section, which undergo uncoupled heaving and rolling motions in an incident linear gravity wave in deep water. Wave energy is supposed to be extracted by a linearly damped generator with an spring. Some well-known formulae in ship hydrodynamics such as Haskind-Newman relation and Bessho-Newman relation are utilized in forms of Kochin functions to derived expressions for efficiency, breaking effect and drift force of the absorber. Maximum ideal efficiency of 100% can be arrived at an prescribed tuning frequency. Coupling effect is also examined to assess the detrimental effect of sway on efficiency. From numerical calculations for both types of two-dimensional devices it may be concluded that a wave-energy absorber functions at the same time as a wave breaker and that the drift force acting on the device becomes smaller when it absorbs wave energy than as it oscillates freely. Finally the study is extended to an infinite array system, equivalent to a body in a canal, to show that all incident wave energy can be absorbed regardless of the absorber's size, only if the optimum space and the optimum condition of control are realized.

  • PDF

Onset of Inertial Oscillation in a Rotating Flow (회전유동에서의 관성진동 원인규명)

  • Park, Jun-Sang
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2536-2539
    • /
    • 2008
  • A study has been made on how to occur inertial oscillations in a rotating flow. The flow is considered to be induced by differentially-rotating top and bottom disks with infinite radius. The top and bottom disks are assumed to be set in motion over a finite initial start-up time duration from initial solid body rotation ($\Omega$) to each finial state, i.e., the top disk is rotating at the angular velocity (${\Omega}+{\Delta}{\Omega}$) and the bottom disk (${\Omega}-{\Delta}{\Omega}$). The system Reynolds number, which is a reciprocal of conventional Ekman number in rotating flows, is very high so that a boundary layer flow near disks is pronounced. From a strict theoretical analysis, it is clearly found the fact that inertial oscillation in a rotating flow is caused by excessive input of torque during start-up phase. Above finding comes from the following physics of theoretical result: in the case of abrupt start-up within very shorter time-duration than spin-up time scale, the inertial oscillation is magnified but it could be completely depressed in the case of mildly accelerated start-up, i.e., start-up process being established over diffusion time scale.

  • PDF

An Efficient Model for Dynamic Analysis of Caisson Breakwaters under Impulsive Wave Loadings (충격파력을 받는 케이슨 방파제의 동적 해석 모델)

  • 박우선;안희도
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.1
    • /
    • pp.108-115
    • /
    • 1995
  • An efficient model for the dynamic analysis of caisson breakwaters under impulsive wave loadings is presented. The caisson structure is. regarded as a rigid body, and the rubble mound foundation is idealized as virtual added masses, springs, and dampers using the elastic half-space theory. The frequency-dependent hydrodynamic added mass and damping coefficients are considered by using the time memory functions and added mass at infinite frequency. To simulate the permanent sliding phenomenon of the caisson, the horizontal spring is modeled as a nonlinear spring with plastic behaviors. Comparisons with experimental results show that the present model gives fairly good results. Sensitivity analysis is performed for the relevant parameters affecting the dynamic responses of a caisson breakwater. Numerical experiments are also carried out to investigate the applicability to the prediction of permanent sliding distance and critical weight of the caisson.

  • PDF