• Title/Summary/Keyword: Infinite Model

Search Result 632, Processing Time 0.031 seconds

Movie Recommendation Using Co-Clustering by Infinite Relational Models (Infinite Relational Model 기반 Co-Clustering을 이용한 영화 추천)

  • Kim, Byoung-Hee;Zhang, Byoung-Tak
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.443-449
    • /
    • 2014
  • Preferences of users on movies are observables of various factors that are related with user attributes and movie features. For movie recommendation, analysis methods for relation among users, movies, and preference patterns are mandatory. As a relational analysis tool, we focus on the Infinite Relational Model (IRM) which was introduced as a tool for multiple concept search. We show that IRM-based co-clustering on preference patterns and movie descriptors can be used as the first tool for movie recommender methods, especially content-based filtering approaches. By introducing a set of well-defined tag sets for movies and doing three-way co-clustering on a movie-rating matrix and a movie-tag matrix, we discovered various explainable relations among users and movies. We suggest various usages of IRM-based co-clustering, espcially, for incremental and dynamic recommender systems.

The Comparative Study for Software Reliability Model Based on Finite and Infinite Failure Property using Rayleigh Distribution (레일리분포를 이용한 유한고장과 무한고장 소프트웨어 신뢰성 모형에 대한 비교연구)

  • Kim, Kyung-Soo;Kim, Hee-Cheul
    • Journal of Digital Convergence
    • /
    • v.12 no.12
    • /
    • pp.277-284
    • /
    • 2014
  • The NHPP software reliability models for failure analysis can have, in the literature, exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, finite failure NHPP models that assuming the expected value of the defect and infinite failures NHPP models that repairing software failure point in time reflects the situation, were presented for comparing property. Commonly used in the field of software reliability based on Rayleigh distribution software reliability model finite failures and infinite failures were presented for comparison problem. As a result, infinite fault model is effectively finite fault models, respectively. The parameters estimation using maximum likelihood estimation was conducted. In this research, can be able to help software developers for considering software failure property some extent.

The Comparative Study for Software Reliability Model Based on Finite and Infinite Failure Exponential Power NHPP (유한 및 무한고장 지수파우어 NHPP 소프트웨어 신뢰성모형에 대한 비교 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.3
    • /
    • pp.195-202
    • /
    • 2015
  • NHPP software reliability models for failure analysis can have, in the literature, exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, finite failure NHPP models that assuming the expected value of the defect and infinite failures NHPP models that repairing software failure point in time reflects the situation, were presented for comparing property. Commonly used in the field of software reliability based on exponential power distribution software reliability model finite failures and infinite failures were presented for comparison problem. As a result, finite fault model is effectively infinite fault models, respectively. The parameters estimation using maximum likelihood estimation was conducted. In this research, software developers to identify software failure property some extent be able to help is considered.

A Study for NHPP software Reliability Growth Model based on polynomial hazard function (다항 위험함수에 근거한 NHPP 소프트웨어 신뢰성장모형에 관한 연구)

  • Kim, Hee Cheul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.4
    • /
    • pp.7-14
    • /
    • 2011
  • Infinite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rate per fault (hazard function). This infinite non-homogeneous Poisson process is model which reflects the possibility of introducing new faults when correcting or modifying the software. In this paper, polynomial hazard function have been proposed, which can efficiency application for software reliability. Algorithm for estimating the parameters used to maximum likelihood estimator and bisection method. Model selection based on mean square error and the coefficient of determination for the sake of efficient model were employed. In numerical example, log power time model of the existing model in this area and the polynomial hazard function model were compared using failure interval time. Because polynomial hazard function model is more efficient in terms of reliability, polynomial hazard function model as an alternative to the existing model also were able to confirm that can use in this area.

A Threshold QBD Queueing Model for Web Server System (웹 서어버를 위한 유사출생사멸 Threshold 대기행렬모형)

  • Lee Ho Woo;Cho Eun-sung
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.2
    • /
    • pp.131-142
    • /
    • 2005
  • This paper proposes queueing models for a Web server system which is composed of an infinite-buffer main server and finite-buffer auxiliary server(s). The system is modeled by the level-dependent quasi-birth- death (QBD) process. Utilizing the special structure of the QBD, we convert the infinite level-dependent QBD into a finite level-independent QBD and compute the state probabilities. We then explore the operational characteristics of the proposed web-server models and draw some useful conclusions.

A Study on the Depreciation by Dual Price in Korea (우리나라에서 쌍대가격에 의한 감가상각의 측정에 관한 연구)

  • 조진형
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.14 no.24
    • /
    • pp.15-21
    • /
    • 1991
  • Jones [11], [12]developed a measurement method of the economic depreciation by infinite-horizen linear program model. This paper models an economic depreciation schedule in constant price based on the infinite-horizen LP. And the appropriate application of the maintenance/operating cost, the discount rate, the taxation and the price fluctuation in the model was suggested.

  • PDF

Analysis and Verification of Slope Disaster Hazard Using Infinite Slope Model and GIS (무한사면해석기법과 GIS를 이용한 사면 재해 위험성 분석 및 검증)

  • 박혁진;이사로;김정우
    • Economic and Environmental Geology
    • /
    • v.36 no.4
    • /
    • pp.313-320
    • /
    • 2003
  • Slope disaster is one of the repeated occurring geological disasters in rainy season resulting in about 23 human losses in Korea every year. The slope disaster, however, mainly depends on the spatial and climate properties. such as geology, geomorphology, and heavy rainfall, and, hence, the prediction or hazard analysis of the slope disaster is a difficult task. Therefore, GIS and various statistical methods are implemented for slope disaster analysis. In particular, GIS technique is widely used for the analysis because it effectively handles large amount of spatial data. The GIS technique. however, only considers the statistics between slope disaster occurrence and related factors, not the mechanism. Accordingly. an infinite slope model that mechanically considers the balance of forces applied to the slope is suggested here with GIS for slope disaster analysis. According to the research results, the infinite slope model has a possibility that can be utilized for landslide prediction and hazard evaluation since 87.5% of landslide occurrence areas have been predicted by this technique.

Acoustic radiation from resiliently mounted machinery in fluid loaded infinite cylindrical shell with periodic ring supports (보강 원통형 쉘에 탄성 지지된 기계류에 의한 수중 음향 방사)

  • Bae, Soo Ryong;Jung, Woo Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.644-649
    • /
    • 2014
  • Analytical model is derived for the far-field acoustic radiation from machinery installed inside cylindrical shell. The analytical model includes the effect of fluid loading and interactions between periodic ring supports. Transmitted force from machine to a shell can be different by the impedance of shell. In this paper the transmitted force from machinery to a infinite shell through vibration isolator is considered by the impedance of shell. The effect of the shell impedance for acoustic radiation is investigated.

  • PDF

Effects of Drilling Degrees of Freedom in the Finite Element Modeling of P- and SV-wave Scattering Problems

  • Kim, Jae-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.1E
    • /
    • pp.37-43
    • /
    • 1999
  • This paper deals with a hybrid finite element method for wave scattering problems in infinite domains. Scattering of waves involving complex geometries, in conjunction with infinite domains is modeled by introducing a mathematical boundary within which a finite element representation is employed. On the mathematical boundary, the finite element representation is matched with a known analytical solution in the infinite domain in terms of fields and their derivatives. The derivative continuity is implemented by using a slope constraint. Drilling degrees of freedom at each node of the finite element model are introduced to make the numerical model more sensitive to the transverse component of the elastodynamic field. To verify the effects of drilling degrees freedom and slope constraints individually, reflection of normally incident P and SV waves on a traction free half spaces is considered. For the P-wave incidence, the results indicate that the use of slope constraint is more effective because it suppresses artificial reflection at the mathematical boundary. For the SV-wave case, the use of drilling degrees freedom is more effective by reducing numerical error at irregular frequencies.

  • PDF

Use of infinite elements in simulating liquefaction phenomenon using coupled approach

  • Kumari, Sunita;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • v.2 no.4
    • /
    • pp.375-387
    • /
    • 2013
  • Soils consist of an assemblage of particles with different sizes and shapes which form a skeleton whose voids are filled with water and air. Hence, soil behaviour must be analyzed by incorporating the effects of the transient flow of the pore-fluid through the voids, and therefore requires a two-phase continuum formulation for saturated porous media. The present paper presents briefly the Biot's basic theory of dynamics of saturated porous media with u-P formulation to determine the responses of pore fluid and soil skeleton during cyclic loading. Kelvin elements are attached to transmitting boundary. The Pastor-Zienkiewicz-Chan model has been used to describe the inelastic behavior of soils under isotropic cyclic loadings. Newmark-Beta method is employed to discretize the time domain. The response of fluid-saturated porous media which are subjected to time dependent loads has been simulated numerically to predict the liquefaction potential of a semi-infinite saturated sandy layer using finite-infinite elements. A settlement of 17.1 cm is observed at top surface. It is also noticed that liquefaction occurs at shallow depth. The mathematical advantage of the coupled finite element analysis is that the excess pore pressure and displacement can be evaluated simultaneously without using any empirical relationship.