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A Threshold QBD Queueing Model for Web Server'System*
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models and draw some useful conclusions.

m Abstract ®

This paper proposes gueueing models for a Web server system which is composed of an infinite-buffer main server
and finite-buffer auxiliary server(s). The system is modeled by the levei-dependent quasi-birth- death (QBD) process.
Utilizing the special structure of the QBD, we convert the infinite level-dependent QBD into a finite level-independent
QBD and compute the state probabilities. We then explore the operational characteristics of the proposed web-server
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1. Introduction

Most of the early web-server systems con-
sisted of a single server which had to process
all kinds of user requests and data types. But as
the demand for high—quality web services ex-

ploded and web technologies advanced, there has

been an increasing demand for user-interactive
image-based web services.

Usually a user request for a web-page consists
of two mixed parts of services : simple HTML-
based text part and CGI-based image and applet
part (CGI : Common Gate Interface). In the serv-
ice of the HTML part, the server only needs to
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send the text pages to the user computer and
does not need a large amount of processing time.
But, the CGI part needs to retrieve the image and
streaming data stored in the hard disk or gen-
erate the applets on the user part so that the user
can input and retrieve the data to and from the
web server. Therefore, a CGI service requires
heavy amount of processing time. Moreover, web
security is becoming more important in the e-busi-
ness and the time for the CGI part is getting
heavier. As a consequence, with higher proba-
bility the single-server web system may not
handle the user requests within an appropriate
amount of time and on a reasonable level of qual-
ity of service (QoS). One simple remedy is ob-
viously to add an auxiliary server. But this re-
quires a careful implementation. ,
With these observations in mind, we propose
the following web-server threshold scheduling
policy: the main server (server—1) processes both
types of services until the number of requests
reaches some pre~determined threshold value N.
As soon as the number exceeds N, the process-

ing of the CGI-part of a request is relegated to

the auxiliary server (server-2) which has a finite
buffer (this buffer size is assumed for control
purposes). To prevent excessive overload at
server-2, if the buffer is full, the main server
doés not send any job to the server-2 until there
is a space available. Operating in this way, the
two servers process the user requests inter-
actively by monitoring the dynamic load levels
at each other server [Figure 1.1].

Literature on queueing approach to web-serv-
er systems are very rare. Note that we are not
dealing with the server switching problem in
Internet server clusters (Chase [2]) or load bal-
ancing problems in a distributed web-server
system (Cardellini, Colajanni and Yu [1]).

Our objectives in this paper are two-fold.
Firstly, we want to demonstrate a queueing ap-
proach to the analysis of web-server systems.
Secondly, we would like to draw some con-
clusions that might be useful to the cost-effec-
tive operation of the web-server systems. We

believe that our modeling effort is meaningful

A

Internet

Main Server

Auxiliary Server

[Figure 1.1]1 Proposed web-server system
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even though the actual user requests for web pa-
ges do not follow the Poisson arrival process and
the service times are not exactly exponential, be-
cause, as widely known in diverse queueing phe-
nomena, overall behavior of queueing processes
is generally insensitive to their exact inter-arrival
and service time distributions.

In this paper, we first use the infinite level-
dependent quasi-birth-death (QBD) process to
model the proposed web-server system. We then
use the special structure of the QBD to convert
it to a finite level-independent QBD and compute
the state probabilities. Finally we explore the per-
formance analyses of the proposed web-server
systems and draw some meaningful conclusions.

This paper combines the separate works of Lee
and Cho [4], brings them under one framework

of analysis and provide general interpretations.

2. Single Auxiliary-Server
Model

In this section, we analyze the web server sys-
tem in which there are a main server and an aux-
iliary server. We assume that the user requests
(customers) arrive according to the Poisson
process with rate A. The normal service rate of
server-1 (main server) is exponential with rate
1, and that of server-2 (auxiliary server) is u,.
A new customer is served by server-1 first and
then, depending on the service policy, may be
transferred to server-2 or leaves the system.

The service policy is as follows. If the queue
length (i.e., the number of user requests) is less
than or equal to the threshold N, all the custom-
ers are served by server-1 at normal rate n, and
the finished customers depart the system. If
there are more customers than the threshold N

it&A4Ad Threshold W7jgdey 133

at queue-1, the server-1 processes only the
HTML-part of a request and if the customer
needs an extra processing time for its CGI-part,
it is sent to the server-2. In this case, since the
processing time of the HTML-part alone is sub-
stantially smaller than the service times of the
whole part (i.e, HTML+CGI), we increase the
service rate of the server-1 from u; to au,,
{¢>1). We assume that a customer needs both
types of services (ie, HTML and CGI) with
probability p, which means that if there are more
than N customers at queue-1, each finished cus-
tomer is sent to queue-2 with probability p. To
prevent excessive overload at queue-2, if the
buffer is full at queue~2, customers are no longer
sent to queue-2 and the service rate of server-1

returns back to the original rate n,.

2.1 The Model and Analysis

Let us assume that the buffer capacity is m—1
at queué—Z (thus, there can be a maximum of m
customers at queue-2 including the one in serv-
ice). Let us define the system state as (3,7)
where 7 is the queue length at queue-1 and J
is the queue length at queue-2. The proposed
service policy is depicted in the figure below,

TS 2
q;

" Queue-1 Queue-2

[Figure 2.1]1 The service process
where the service rates are

(i<N, 0<j<m), (DN, j=m),

sy={"r U /
i~ len,, (ON, 0<j<m—1).

The rate-flow diagram of the queue length

process is given below.
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(Figure 2.2] The transition rate diagram

The infinitesimal generator @ becomes

I(N =1) I(N) I(N +DI(N + 2)I(N +3)

1(0) Iy 12y 13)

w [B, A, 0 0 0 0 0 0 0 -
) JA, A A, O 0 0 0 o0 o
@ |0 A, A A, 0 0 0 0 0
Q=/v-n[ 0 0 0 A, A, A, 0 0 0
) |6 0 0 0 A, A, A, 0 0
w+n|l 0 0 0 0 0 A, A, A, O

N+ 0 0 0 0 0 0 A, A A, @D
i P S
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In the above matrix, ¢ (=) denotes level- x.
Also, the individual matrices are of size (mxm)

and are as follows :

Hy _(A.+112) 0 i 0
0 uz —(A+ny) - 0
0 u'z e 9
0 . iy -—(}\.+112
(2.2)
(a0 0 0 - Oy
Oup, 0 0 - 0
|0 0wu, 0 - 0
A, 00 0w 0 (23
0000
(A0 0 0 - 0y
02000
{00 X0 0
A, 0 0 0 - 0 2.4)
0000 - A
=0t 0 00 0 N
ac| v emmabe 0
0 0 0 - my —(A i, +uy)
25)
— ey 0 0 0
711=( B2 —(vtantiy) 0 - 0 ]’
0 0 ; u-z _(}\+.111+1lz)
2.6)
and
{ gy pen; 0 0 - 0
0 geu, pan; 0 - 0
=1 0 0 gay pm; -~ 0
Aa, 0 0 0 gan- 0 27

0 0 0 0 o

Note that starting from level ¢(N+1), the
matrices A, and A, change to A, and A4,
respectively. This is because the service rate of
the server-1 increases from u, to cu, if the
queue length at queue~1 exceeds the threshold
N. The matrix @ implies that we have an in-
finite level-dependent QBD but with a very spe-

cial structure.
For the analysis of the QBD @, we decompose
the level space into two groups:

S={¢(0), £(1),, £(N-1), 2 (W)},
T={¢(N+1), ¢(N+2), £(N+3),--}.

Then, we have
(Qs Qs
= L J 2.8)

Qrs @Qr

where

Q¢ = transition rates between levels within S,
Q= transition rates between levels within T,
Qs = transition rates from S to 7T, and

Qs = transition rates from T to S.

If we take a closer look at the decomposed in-
finitesimal generator @, we see that Qg takes
a form of finite level-independent QBD, and Q.,
an infinite level-independent QBD. If we utilize
these structural characteristics of @, it is possi-
ble to convert @ to a finite level-independent
QBD and compute the stationary state proba-
bilities {my, ®,, -, n 5}. Then, we can use Qr
to compute {Ty,,, Tyea )

For this purpose, we assume that @y is pos—

itive recurrent. This means
uz ze > 0.2 0

where a is the stationary probability vector of
the matrix A,+ A ,+ A, This implies that if

the process starts in one of the levels in T, it

enters 2 (N) in a finite number of transitions.

As far as the state probability 7 y is concerned,

the whole group T can be considered as an
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imaginary level ¢(T). Then, we have a new
QBD Q7% as follows :

2(0) ¢(D) - 2N e(D
2 ( By A 0 0 0 0 - 0)
)| Az AL A 0 0 0 0
: 0 A, A, A, 0 O 0
@G= L[ 0 0 A4 A A0 0
151;0) 0 0 0 0 0 A,A, A
V4
0 0 o0 o0 o0 0 A,B (2.9)

Since the QBD @ is both right and left
skip—free, the transitions between S and T oc-
cur only through levels ¢(N) and ¢ (N+1).
Once the process enters £ (N+1) from 2 (N),
it stays in T and returns to £ (N) through
2(N+1) again. Thus, the matrix B, in (2.9)
represents the transitions between the states be-
longing to the imaginary level ¢ (T) which
means that B, is the infinitesimal generator of

the transient continuous-time Markov chain re-
stricted to ¢ (N+1) and is given by

B,=A,+A (- U A, (2.10)

The matrix U in (2.10) is the infinitesimal
generator of the transient continuous-time
Markov chain that is restricted to level ¢ (N+2)
before it reaches to 2 (N+1) and is given by (see
Latouche and Ramaswami {5])

U=ZI+A0(“‘ U)_IZZ. (2.11) )

Thus we have B,=U. (2.12)

Now, the usual familiar matrices defined on the

levels belonging to T can be expressed as

R= Ao(_ U)_l, (213)
G=(-U0)""A, (2.14)

The (i, /)-element of matrix G is the proba-

bility that the process ever enters level ¢ (xn—1)
through phase ; under the condition that it starts
in phase ¢ of level #(»n). The (i,;j)-element of
matrix R is the mean time the process stays in
phase j of level ¢ (z+1) under the condition that
it starts in phase ¢ of level ¢ (#). For more de-
tailed definitions and computations of these ma-
trices, readers are referenced to Latouche and
Ramaswami [1999].

2.2 Computation of Probabilities

Based on the above analysis, we can compute
the state probability vector

Tt ={n0’“1’".’nN!nN+l’-"}

by taking the steps as follows. Let us denote the
prior state probabilities (i.e., before being nor-

rnahzed) by p={p0, Dy,

P r= i=¥+1 b
(Step 1) Compute- U or G and then R.
(Step 2) Starting from p, compute p, and

b n ). Let us define

then {pgy, #,."*,py_,}. Since p  represents the
sum of the higher state probabilities from level

¢(n—1), we have the following relationship :

0

pr= 3 b= ngRi=pNR(I—R)‘1(2.15)

j=N+1
which means
py=pr (I-R)- R (2.16)
Then, starting from p, we can compute {2,
by, Py 1) Starting vector p r can be obtained
as the level probability vector of ¢ (T) in QBD
Q7.

(Step 3) Compute the state probabilities {m,, 7,
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-, 1, of the QBD @ by normalizing { p,, 9,
L Pw BTl

b;

X, = ,(0<i<sN) (217

N
;}p, e+pre

where e is the column vector of one’s.

(Step 4) Compute the state probabilities {® y.,,
T vy -} Of the QBD @ from

n;=ayR7YN, (j=N+1). (218)m

The theoretical background for (Step 4) is the
matrix geometric theory of Neuts [6].

The application of the Linear Level Reduction
(LLR) algorithm to the above steps goes as
follows. For the LLR algorithm and the matrix
C; used n the following algorithm, readers are
referenced to Latouche and Ramaswami [5:
Section 10.1]).

(ALGORITHM)
C,= By,

for i=1to N, do
Ci=A,+A,(—C,_)"'Ay;

end
G=(-AD'A,;
while lle—-Gell=¢ do
U=2A,+A,G;
G=(-U"'A4,;
end
B,=U;
R=A(-U)7};
Cr=B,+A,(— CN)’IAO;
solve
pr-Cr=0, pr-e=1;
end

pszT-([_R).R‘I;
for i(=N—1 back to 0. do

pi=p,,A(—C)7 !,

end
n,=(p e 'p, 0<i<N)
n;= xRV, (N+1<j)

2.3 Performance Analysis

Based on the above analysis, we evaluate the
system performance of the proposed web-server
model. Assume that the maximum queue length
at queue-2 is 200 (m=200) and the threshold at
server-1 is N=100. Also, we assume A=40,
uy; =20, ¢=2, and p=0.6.

[Figure 2.3] shows the queue length proba-
bilities of the total number of customers for dif-
ferent values of u,.

9.00E-02
8.00E-02
7.00E-02

2 conez

3
E 5.006-02
% 4.00E-02
3.006-02
g 2.00£-02 #=40
1.00€-02
0.00E+00 = ' = Towa
L1121 31 41 5161 71 8L 91 10t 111 120 131 341 151 61 171 181 391 queye length
[—ay ot gy ts ot o0 o —p-a]

[Figure 2.3]1 Queue length probability for different u,
( m=200, N=100,A=40, u, =20, c=2, p—0.6)

For all cases, the maximum queue length prob-
ability is reached at around 100 customers. This
is because until the queue length reaches the
threshold N= 100, the service rate at server-1 is
relatively low and customers begin to be dis-
patched to queue-2 only when the queue length
exceeds the threshold. It is interesting to see the
waves rising from the right and waning to the
left as u; increases. The height of the wave
reaches the peak when the queue length reaches
100. On the other hand and as can be expected,
if u, is very high (see the graph of u, =40), the
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queue length probabilities begin to fall at around
the threshold N=100. This is because just after
the queue length reaches the threshold, the serv-
ice rate at server-1 increases to cu, and the ser-
ver-2 joins to operate.

[Figure 2.4] shows the mean queue length
when u,; varies. It can be seen that the mean
queue length drops abruptly when 1, is around
38 under the current parameter setting. Note that
this is the service rate at around the end of the
waves in [Figure 2.3].

3
T

Mean queve length
3

&

o
- ”l

[Figure 2.41 Mean atieue Iengihs as u, varies
(m=200, N=100,A =40, u,=20,c=2, p=0.6)

[Figure 25] shows the change of the queue
length probabilities for different values of u,
when 1, is fixed. Note that the queue length
probabilities drop quickly for all cases at around
100, which is different from [Figure 2.3). The
slope of the mean queue length changes slowly
([Figure 2.6]). This is due to the fact the server-2
has a finite buffer size and the customers are
sent to the server-2 only when the queue length
at server-1 exceeds the threshold.

[Figure 2.7] shows the queue length proba-
bilities as the threshold changes. For all cases,
the maximum queue length probability is reached
at around each threshold. [Figure 2.8] shows the
mean queue length as the threshold varies. It is
interesting to see that the mean queue length lthe
queue length probabilities at [Figure 2.7] show

1.40E-01

1.20E-01

1.00E-01

B8.00E-02

6.00E-02

Queue length probability

4.00E-02

2.00€-02

0.00E+00

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 Toe
queue length

R — e ——

[Figure 2.5] Queue length probability for different u,
( m=200, N=100,A =40, n,=25,c=2,=0.6)

Mean queue length

%0
Ed 2 2 % 3 Y 2 £ 3% 38 o #H

(Figure 2.6] Mean queue lengths as u, varies
(m=200, N=100,A =40, u, =20, c=2, p=0.6)

4,008-02
350602
g Bo0E02
% 250602
g 2.00€-02

1.50€:02

.008-03

0.00E+00
1

[Figure 2.7]1 Queue length probabilities when N varies
{(m=200,A=40,1,=25, n,=20, c=2,p= 0.6)

Mean queue length

s B & 8 8

[Figure 2.8]1 Mean queue length when N varies
(m=200,A=40,u,=25,1,=20,c=2,p=0.6)

the identical shapes and behavior (but with dif-
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ferent mean values).

3. Multiple Auxiliary-Server
Model

This section extends the work of section 2 to
the case of multiple auxiliary servers in which
there are a main server and an auxiliary server
group (ASG). The ASG is assumed to consist
of % identical servers. The system operation is

depicted in the figure below,

TG 2 FHG)
ASG

Server-1 g,

[Figure 3.1]

where the service rates are given by

(igN, 0<j<m), (DN, j=m),

Si= {UI’ . .
any, (DN, 0</<m—1),
5 _ {juz' (1<j<k—1),
TV, (k<j<m).

The service rate 5, came from the fact that
the M/M/k queueing system can be modeled as
an M/M/1 with state-dependent service rate. In

the figure, p; and ¢, are given by

' pl'=0x qi=lr

o= | (i<N),
"5 ocpi<1, ai=1-1,

(DN).

The transition rate diagram is as follows :

A A
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7 ] m ] m - Hy qcty qci,
2u, 2u, 2u, 241, 21, pey, 2y, APt 24,
Ay Ay Ay Ao y) iy .
0,2 . 1,2 2.2 e N-1,2 N2 N+1,2 N+@
s H H - T H T} qcp/ T qch, T‘
3u, 3u, 3u, Bu Hy pep, 3u, pey, 3u,
4 by, ky, Ky, K,
.o N-lk Nk N+1k (Na2x) .
qci, qcy,
Tkyz T ;/clek,, 4;1 ks,
Ikpz ku, pcul ky, PCMIkﬂz

() HON

RS

[Figure 3.2] Transition rate diagram

The infinitesimal generator @ is of the same

form with (2.1) where,
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and (gay pay; 0 0 - Oy 3.1 Performance analysis
0 gay pan; 0 -0
2A,=| 5§ edran 8 (36)
S S B [Figure 3.3]~[Figure 3.8} show the perform-
0 0 0 0 - n ance of the system with two auxiliary servers.

The computation procedure is exactly the same
as in the single auxiliary-server model of section
22.

1.206-01
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[Figure 3.3] Queue length probability for different u,
( m=200, N=100,A =50, 1, =20,
c=2,p=0.6,k=2)

As can be seen in the figures, the overall behav-
ior is very similar to that of the single auxil-

iary-server system.

g

Mean queue length

o B & 8 B

My

1

[Figure 3.4] Mean queue length for different n,
( m=200, N=100,A =50, u, =20,
c=2,p=0.6,k=2)
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[Figure 3.6] Mean queue length for different u,

( m=200, N=100, A=50, u,=28,
c=2,p=0.6, k=2)
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[Figure 3.7] Queue length probabilities when N
varies( m= 200, A =50, #,=28,
1y =20, c=2, p=0.6, £=2)

4. Conclusions Drawn from
the Performance Analyses

From the analyses and interpretations of the
operational characteristics so far, we can draw
the following conclusions :

(1) The effect of the service rate at server-2 is
less significant than the service rate at serv—
er-1 on the system performance. This im-
plies that if one wants to control the system
behavior within a limited budget, it would be
profitable to exert his effort to controlling
server-1 rather than server-2. Along the
same line, if both the threshold N at server-1
and the buffer size m at server-2 are con-

trollable, then, controlling » may not be so

[Figure 3.8] Mean queue length when N varies

(m=200, \=50, 2, =28, uy;=20,
c=2,p=0.6, k=2)

fruitful than controlling the threshold N at

server-1.

(2) The wave pattern of the queue length proba-

bilities when u,; changes may serve as an
important indicator of more crucial features
concerning the system performance (see
[Figures 2.3], [Figure 2.5], and [Figures 3.3],
[Figures 3.5]). Thus, it may be meaningful
to keep track of the change of the queue
length probability patterns at queue-1.

(3) Above (1) and (2) give us an important tip

concerning the cost-effective operation of the
web-server system : adding a more powerful
server-2 than the main server may not be
fruitful in the operation of the whole web-ser-
ver system. If the server-2 is more powerful,
then it should be diverted to the main server.
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5. Comments and Summary

In this paper, we proposed a queueing model
for a web-server system. We used the quasi-
birth—death (QBD) queueing model to develop an
algorithm and compute the queue length prob-
abilities. Under various parameter settings, we
evaluated the operational characteristics of the
web-server system. Our study shows that the
service rate at server-1 is more significant in the
behavior of the whole system. Thus, if any effort
needs to be made to control the system perform-
ance, it should be directed to the server-1.

If the number of servers at queue-1 is muitiple,
we would have level-dependent QBD even be-
fore the level N. But we can still use the same
algorithm of section 2 but with slightly modified
matrices C? for each level i. The performance
analysis of this systerﬁ will be left as a future

research.
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