• Title/Summary/Keyword: Infiltration rates

Search Result 152, Processing Time 0.03 seconds

A Hydrologic Analysis for the Infiltration Storages Planned on Jeju-do (제주도에 계획된 침투저류지의 수문학적 분석 사례)

  • Lee, Sangho;Lee, Jungmin;Kang, Taeuk;Kang, Shinuk
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.1040-1048
    • /
    • 2010
  • An infiltration storage can be installed as a method of reducing runoff from catchment and increasing stream flow during the dry period by recharging groundwater. However, there is no proper model and method that can be used to design storage capacity of an infiltration storage in Korea. The purpose of the study is to evaluate capacities of infiltration storages planned on Jeju-do in Korea by modifying Storm Water Management Model (SWMM). The basic equations for the infiltration storage are same as those of the infiltration trench used in MIDUSS. Infiltration rates of the infiltration storages were first measured by double ring infiltrometers, and then the modified model was applied to evaluate adequacy for the capacities of three infiltration storages planned on Jeju-do in Korea. The application results show that the two infiltration storages with higher infiltration rates have adequate capacities to infiltrate the total water inflow to the storages. However, the other infiltration storage with lower infiltration rates has not sufficient capacity to infiltrate the total water inflow to the storage and release occurs to the downstream region. The simulation model and method applied can be used for capacity evaluation of future infiltration storages on highly pervious areas in Jeju-do.

Factor analysis on infiltration using correlations (상관성 분석을 통한 침입수 발생 영향인자 분석)

  • Ryu, Jae-Na;Oh, Je-Ill;Choi, Ick-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.185-192
    • /
    • 2011
  • Pearson's correlation was used to determine relations between infiltration and affecting factors using flow monitoring data measured in 24 areas with different characteristics. Factors showed relatively high correlations than others were indexed to determine infiltration rates of the study area. Among 8 factors(service area, sewer length, sewer diameter, multiplier of sewer length and diameter, number of manholes, population, number of properties, number of households) tested, the multiplier of sewer length and diameter, the number of population and the number of household in each service area indicated higher correlation coefficient(>0.8) than others. The goodness of fitness of linear regressions between infiltration and the factors followed the order: sewer length and diameter(0.68)> population(0.65)> number of household(0.60). Infiltration rates calculated by the multiplier of sewer length and diameter, the number of population and the number of household in each service area were 0.046~1.0396 $m^{3}/d{\cdot}mm-km$, 0.0917~1.7355 $m^{3}/capita{\cdot}d$, 0.196~4.529 $m^{3}/household {\cdot}d$ respectively. After sewerage rehabilitation work of the area, the infiltration rates calculated by above factors with high correlations are expected to be used for comparing effectiveness of the work once they are estimated under the same flow measuring conditions.

The Effects of Infiltration Rate of Foundation Ground Under the Bioretention on the Runoff Reduction Efficiency (식생체류지의 원지반 침투율이 유출량 저감효과에 미치는 영향모의)

  • Jeon, Ji-Hong;Jung, Kwang-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.1
    • /
    • pp.72-77
    • /
    • 2019
  • Soil type in LID infiltration practices plays a major role in runoff reduction efficacy. In this study, the effects of infiltration rate of foundation ground under bioretention on annual runoff reduction rate was evaluated using LIDMOD3 which is a simple excel based model for evaluating LID practices. A bioretention area of about 3.2 % was required to capture surface runoff from an impervious area for a 25.4 mm rainfall event. The relative error of runoff from bioretention using LIDMOD3 is 10 % less than that of SWMM5.1 for a total rainfall event of 257.1 mm during the period of Aug. 1 ~ 18, 2017, hence, the applicability of LIDMOD3 was confirmed. Annual runoff reduction rates for the period 2008 ~ 2017 were evaluated for various infiltration rates of foundation ground under the bioretention which ranged from 0.001 to 0.600 m/day and were converted to annual runoff reduction for hydrologic soil group. The runoff reduction rates within hydrologic soil group C and D were steeply increased through increased infiltration rate but not steep within hydrologic A and B with reduction rates ranging from 53 ~ 68 %. The estimated time required to completely empty a bioretention which has a storage depth of 0.632 m is 3.5 ~ 6.9 days and we could assume that the annual average of antecedent rainfall is longer than 3.5 ~ 6.9 days. Therefore, we recommended B type as the minimum hydrologic soil group installed LID infiltration practices for high runoff reduction rate.

A Comparative Study Between High and Low Infiltration Soils as Filter Media in Low Impact Development Structures

  • Guerra, Heidi B.;Geronimo, Franz Kevin;Reyes, Nash Jett;Jeon, Minsu;Choi, Hyeseon;Kim, Youngchul;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.130-130
    • /
    • 2021
  • The increasing effect of urbanization has been more apparent through flooding and downstream water quality especially from heavy rainfalls. In response, stormwater runoff management solutions have focused on runoff volume reduction and treatment through infiltration. However, there are areas with low infiltration soils or are experiencing more dry days and even drought. In this study, a lab-scale infiltration system was used to compare the applicability of two types of soil as base layer in gravel-filled infiltration systems with emphasis on runoff capture and suspended solids removal. The two types of soils used were sandy soil representing a high infiltration system and clayey soil representing a low infiltration system. Findings showed that infiltration rates increased with the water depth above the gravel-soil interface indicating that the available depth for water storage affects this parameter. Runoff capture in the high infiltration system is more affected by rainfall depth and inflow rates as compared to that in the low infiltration system. Based on runoff capture and pollutant removal analysis, a media depth of at least 0.4 m for high infiltration systems and 1 m for low infiltration systems is required to capture and treat a 10-mm rainfall in Korea. A maximum infiltration rate of 200 mm/h was also found to be ideal to provide enough retention time for pollutant removal. Moreover, it was revealed that low infiltration systems are more susceptible to horizontal flows and that the length of the structure may be more critical that the depth in this condition.

  • PDF

A Study on the Performance Evaluation of Infiltration Prevent Devices in refrigerated Warehouse (냉동냉장창고 침기방지장치의 성능평가에 관한 연구)

  • 곽현철;석호태;송승영;황혜주;안홍섭
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.55-62
    • /
    • 2002
  • In this paper, several types of infiltration prevention devices that are currently in use have been studied through experimental investigation. Firstly, the types of infiltration prevention devices were defined through investigating actual conditions of refrigerated warehouse in operates. Based on this investigation results, measured change of temperature and figured out air change rates of the type of infiltration prevention devices by using scale down model. After that, found the amount of air change rate in order to estimate the load of air change easily in facility plan.

Effects of the irrigation Rate on Wetted Patterns in Sandy Loam Soil Under Trickle irrigation Condition (점적관개에서 관개율이 Sandy Loam토양의 습윤양상에 미치는 영향)

  • 김철수;이근후
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.2
    • /
    • pp.104-115
    • /
    • 1989
  • In an effort to clarify the wetted patterns of sandy loam soil under trickle irrigation conditions, the distance of wetted zone, infiltration capacity and soil wetted patterns, etc. were measured by gypsum block as soil moisture sensor located every 5 cm vertically and horizontaly in the soil bin under the such conditions as a). irrigation rates set to 2, 4, 6, 8 liters per hour b). total amount of water applied fixed to 14.62 liters per soil bin c) the hearing force of soil measured by plate penetrometer ranging from 1.04 to 1.22kg/cm$_2$ The results can be summarized as follows ; 1. The wetted distance in horizontal direction(H), the wetted distance in vertical direction(D), the horizontal infiltration capacity (iH) and the vertical infiltration capacity(in)could by explained as a function of time t. 2. The horizontal wetted distance (H) is explained by an exponetial function H= a$.$ t where b was found ranging from 021 to 026 under surface trickle irrigation, which was considered a lotlower than the classical value of 0.5 and these measurements were indifferent to the increasing irrigation rates. 3. As for the surface trickle irrigation where horizontal infiltration capacity(iH) is explained as iH = A $.$ t h, the coefficient A increases with respect to irrigation rates within the limits of 0.89~1.34. 4. In terms of surface trickle irrigation of the ratio of Dm Which is maximum vertical wetted distance to Hm, which is maximum horizontal wetted distance, found to be within range of 1.0 to 1.21. It was also noted that the value of Dm decreses when irrigation rates increases while the value of Hm changes the opposite direction. 5. The optimum location of sensors from emitter for surface trickle irrigation should he inside of hemisphere whose lateral radius is 28~30cm long and vertical radius is 10~12cm long. The distance between emitters should be within 60cm long. 6. In the study of vertical wetted distance( D) where D= a $.$ tb, the exponential coefficient b ranged from 0.61 to 0.75 in surface trickle irrigation, and from 0A9 to 0.68 for subsurface trickle irrigation. These measurements showed an increasing tendency to with respect to irrigation rates. 7. In case of vertical infiltration capacity( in), where iD= A $.$ t 1-h, the coefficient A for surface trickle irrigation found to be within range of 0.16 to 0.19 and did not show any relationships with varying degree of irrigation rates. However, the coefficient was varying from 0.09 to 0.22 and showed a tendency to increase vis-a-vis irrigation rates for subsurface trickle irrigation, in contrast. 8. In the observation of subsurface trickle irrigation, it was found that Dm/Hm ratio was within 1.52 to 1.91 and showed a decreasing tendency with respect to increasing rates of irrigation. 9. The location of sensors for subsurface trickle irrigation follows same pattern as above, with vertical distance from emitter being 10~17cm long and horizontal 22~25cm long. The location of emitter should be 50 cm. 10.The relationship between VS which is the volume of wetted soil and Q which is the total amount of water when soil is reached field capacity could be explained as VS= 2.914Q0.91and the irrigation rates showed no impacts on the above relationship.

  • PDF

Infiltration in Residential Buildings under Uncertainty (공동주택 침기의 불확실성 분석)

  • Hyun, Se-Hoon;Park, Cheol-Soo;Moon, Hyeun-Jun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.369-374
    • /
    • 2006
  • Quantification of infiltration rate is an important issue in HVAC system design. The infiltration in buildings depends on many uncertain parameters that vary with significant magnitude and hence, the results from standard deterministic simulation approach can be unreliable. The authors utilize uncertainty analysis In predicting the airflow rates. The paper presents relevant uncertain parameters such as meteorological data, building parameters (leakage areas of windows, doors, etc.), etc. Uncertainties of the aforementioned parameters are quantified based on available data from literature. Then, the Latin Hypercube Sampling (LHS) method was used for the uncertainty propagation. The LHS is one of the Monte Carlo simulation techniques that is suited for our needs. The CONTAMW was chosen to simulate infiltration phenomena in a residential apartment that is typical of residential buildings in Korea. It will be shown that the uncertainty propagating through this process is not negligible and may significantly influence the prediction of the airflow rates.

  • PDF

The annual infiltration distribution caused by wind and stack effects in high-rise residential buildings (외부바람과 연돌효과의 상호작용에 의한 고층주거 건물의 연간 침기량 분포)

  • Park, Ju-Hyun;Yoon, sung-min;Song, Du-Sam;Kim, Yong-Sik
    • Journal of Urban Science
    • /
    • v.8 no.1
    • /
    • pp.25-31
    • /
    • 2019
  • Infiltration affects indoor environmental and air quality and energy consumptions in buildings. Especially, airflow and the infiltration are more remarkable in high-rise buildings due to the air-driving forces (stack and wind effects). Thus, it is important to understand infiltration distributions in high-rise residential buildings. In this study, the weather-driven infiltration is characterized from the viewpoint of interactions between external wind and stack effect in high-rise residential buildings. To calculate accurately the annual infiltration distributions, this study also suggests an airflow and thermal simulation method with a two-step calibration of air-leakage data. The simulated results show (1) how the interaction between stack and wind effects induce infiltration types (outdoor and interzone air infiltration) and (2) how much the interzone air infiltration (being ignored in previous studies) occurs due to the stack effect, as well as the outdoor air infiltration rates.

Infiltration Rate of Some Upland Soils in Korea (우리나라 밭토양의 수분침투속도(水分浸透速度)에 관하여)

  • Jung, Y.S.;Ryu, K.S.;Im, J.N.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 1980
  • The infiltration rates of the upland soils on hill side slope were investigated in situ using rainulator of which rainfall intensity was 100mm/hr. The soil moisture profile after the water infiltration was compared with that calculated from Youngs' equation. The results obtained are as follows: 1. Time required for infiltration rate to reach constant during rainfall was 15 to 25 min. The infiltration rate measured after 30 min was considered to be final infiltration rate. 2. The final infiltration rates of clay soils were lower than 10mm/hr., loamy soils 10 to 20., coarse loamy soils 20 to 30, and sandy soils higher than 30mm/hr., respectively. 3. The saturated hydraulic conductivity of the surface soil of Samgag sandy loam was 0.47mm/min., Songjeong clay loam0.16 mm/min., and Jeonnam silty clay loam 0.14mn/min., respectively. 4. The soil moisture profile calculated from Young's equation was in close agreement with measured in situ.

  • PDF

Experimental Study on the Infiltration Loss in Plastic Greenhouses Equipped with Thermal Curtains (보온커튼을 설치한 플라스틱 온실의 틈새환기전열량 실측조사)

  • Nam, Sang-Woon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.100-105
    • /
    • 2015
  • The calculation method of infiltration loss in greenhouse has different ideas in each design standard, so there is a big difference in each method according to the size of greenhouses, it is necessary to establish a more accurate method that can be applied to the domestic. In order to provide basic data for the formulation of the calculation method of greenhouse heating load, we measured the infiltration rates using the tracer gas method in plastic greenhouses equipped with various thermal curtains. And then the calculation methods of infiltration loss in greenhouses were reviewed. Infiltration rates of the multi-span and single-span greenhouses were measured in the range of $0.042{\sim}0.245h^{-1}$ and $0.056{\sim}0.336h^{-1}$ respectively, single-span greenhouses appeared to be slightly larger. Infiltration rate of the greenhouse has been shown to significantly decrease depending on the number of thermal curtain layers without separation of single-span and multi-span. As the temperature differences between indoor and outdoor increase, the infiltration rates tended to increase. In the range of low wind speed during the experiments, changes of infiltration rate according to the outdoor wind speed could not find a consistent trend. Infiltration rates for the greenhouse heating design need to present the values at the appropriate temperature difference between indoor and outdoor. The change in the infiltration rate according to the wind speed does not need to be considered because the maximum heating load is calculated at a low wind speed range. However the correction factors to increase slightly the maximum heating load including the overall heat transfer coefficient should be applied at the strong wind regions. After reviewing the calculation method of infiltration loss, a method of using the infiltration heat transfer coefficient and the greenhouse covering area was found to have a problem, a method of using the infiltration rate and the greenhouse volume was determined to be reasonable.