• Title/Summary/Keyword: Infiltration/Inflow

Search Result 66, Processing Time 0.023 seconds

Characteristics and Combined Sewer Overflows (합류식 하수관거의 유출 특성 분석 조사)

  • An, Ki-Sun;Jang, Sung-Ryong;Kwon, Young-Ho
    • Journal of Environmental Science International
    • /
    • v.19 no.6
    • /
    • pp.747-753
    • /
    • 2010
  • It follows in quality and sewage exclusion method of the investigation objective sector and the Combined Sewer Overflows which is suitable in regional characteristics and the confluence area against the rainfall initially a flow and the medulla and measurement - it analyzes the initial rainfall outflow possibility control plan which is suitable in the domestic actual condition and it proposes the monitor ring plan for the long-term flow and pollution load data accumulation. From the research which it sees the Infiltration water/Influent water and CSOs investigation it passes by the phase of hazard chain and Namwon right time 4 it does not hold reverse under selecting, Measurement it used the hazard automatic flow joint seal Sigma 910 machine and in case 15 minute interval of the I/I, it measured a flow at case 5, 15 minute standing of the CSOs. The water quality investigation for the water leakage investigation of the I/I and the sewage from the point which is identical with flow measurement during on-the-spot inspection duration against 6 items which include the BOD sampling and an analysis, when the rainfall analysis for CSOs fundamental investigation analyzed against 18 items which include the BOD sampling. Consequently, for the optimum interpretation invasion water / inflow water of the this investigation area day average the lowest flow - water quality assessment veterinarian optimum interpretation hazard average per day - lowest flow - it averages a medulla evaluation law department one lowest flow evaluation technique and it selects, it presentation collectively from here it gets, position result with base flow analysis of invasion water / inflow water.

Infiltration Experiments According to the Variation of Soil Condition of Infiltration Collector Well (침투정 토양 조건에 따른 침투 실험)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.3
    • /
    • pp.215-221
    • /
    • 2007
  • The main purpose of this study is to find the appropriate method to prevent the reduction of infiltration capacity due to sealing of soil surface. The study results indicate that installation of gravel or larger soil facilitates the drainage of infiltrated rainwater. However, considering that the infiltration capacity has been reduced since the installation, it seems that the sealing of soil surface is caused by the inflow of suspended soil into the lower sand layer. To promote the infiltration capacity by reducing the pounding of lower natural soil layer, the sand soil should be placed above the natural soil layer with shallow depth just below the larger gravel. Furthermore, the crust generated above the soil surface should be removed regularly and the sand layer above the natural soil layer should be replaced with new one so that the original infiltration capacity can be maintained properly.

Simulating Daily Inflow and Release Rates for Irrigation Reservoirs(II) -Modeling Reservoir Release Rates- (관개용 저수지의 일별 유입량과 방류량의 모의 발생(II) -저수지 통관 방류량의 추정-)

  • 김현영;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.2
    • /
    • pp.95-104
    • /
    • 1988
  • This study refers to the development of a hydrologic model simulating daily inflow and release rates for inigation reservoirs. A daily - based model is needed for adequate operation of an irrigation reservoir sufficing the water demand for paddy fields which is closely related to meteorological conditions. And the objective of this study is to develop a reservoir release rate model and then to calibrata the parameters. The release rates model considers daily water demands , water supply for transplanting, minmum release for maintaining canal flow, and maxirnun and regular flooding depth for determining effective rainfall on paddy fields. Each of the factors in the model was regarded as a lumped pararuter representing the average condition of a whole irrigated area. The water demand was estimated form the potential evapotranspiration by Penman method, the effective rainfall, and the infiltration on paddy fields. The release model was found to be capable of adequately simulating daily reservoir releases based on meteorological data.

  • PDF

Rehabilitation Priority Decision Model for Sewer Systems (하수관거시스템 개량 우선순위 결정 모형)

  • Lee, Jung-Ho;Park, Moo-Jong;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.7-14
    • /
    • 2008
  • The main objective of sewer rehabilitation is to improve its function while eliminating inflow/infiltration (I/I). If we can identify the amount of I/I for an individual pipe, it is possible to estimate the I/Is of sub-areas clearly. However, in real, the amount of I/I for an individual pipe is almost impossible to be obtained due to the limitation of cost and time. In this study, I/I occurrence of each sewer pipe is estimated using AHP (Analytic Hierarch Process) and RPDM (Rehabilitation Priority Decision Model for sewer system) was developed using the estimated I/I of each pipe to perform the efficient sewer rehabilitation. Based on the determined amount of I/I for an individual pipe, the RPDM determines the optimal rehabilitation priority (ORP) using a genetic algorithm for sub-areas in term of minimizing the amount of I/I occurring while the rehabilitation process is performed. The benefit obtained by implementing the ORP for rehabilitation of sub-areas is estimated by the only waste water treatment cost (WWTC) of I/I which occurs during the sewer rehabilitation period. The results of the ORP were compared with those of a numerical weighting method (NWM) which is the decision method for the rehabilitation priority in the general sewer rehabilitation practices and the worst order which are other methods to determine the rehabilitation order of sub-areas in field. The ORP reduced the WWTC by 22% compared to the NWM and by 40% compared to the worst order.

Development of Optimal Urban Runoff System : I. Study of Inflow/Infiltration Estimation Considering AHP in Urban Runoff System (최적 도시유출시스템의 개발 : I. 도시유출시스템에서의 AHP를 고려한 불명수량 산정에 대한 연구)

  • Lee, Jung-Ho;Kim, Joong-Hoon;Kim, Hung-Soo;Kim, Eung-Seok;Jo, Deok-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.3
    • /
    • pp.195-206
    • /
    • 2004
  • One of the main factors which reduces the efficiency of a sewage treatment plant is the Inflow/Infiltration(Ⅰ/Ⅰ) in the sewer First we must calculate the quantity of Ⅰ/Ⅰ via the investigation of each sewer to establish the reduction plan of Ⅰ/Ⅰ. However, in Korea, we apply the results of a surveyed sample to the entire study area to establish the reduction plan of Ⅰ/Ⅰ. This methodology just considers the total Ⅰ/Ⅰ for the entire study area but it does not consider the quantity of Ⅰ/Ⅰ for the individual sewer systems. Therefore, we may need the model to consider the Ⅰ/Ⅰ in the individual sewer systems and we develop the model to calculate the Ⅰ/Ⅰ that happen in urban sewer systems. We estimate the Ⅰ/Ⅰ of individual systems by the developed model and the estimated Ⅰ/Ⅰ are utilized as the basic data for the establishment of Ⅰ/Ⅰ reduction plan. The observed Ⅰ/Ⅰ for the entire study area is distributed into the individual sewer systems according to their defect states. Here, the weights of defect elements are calculated using AHP(Analytic Hierarchy Process) and we perform the uncertainty analysis for considering the errors using MCS(Monte Carlo Simulation).

Cause Analysis for Reduced Effect of Sewer Pipe Improvement Project Based On Investigation of Interceptor Sewers (차집관로의 조사 및 분석을 통한 하수관로정비 사업의 효과 감소 원인 분석)

  • Chae, Myungbyung;Bae, Younghye;Kim, Hungsoo
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.219-226
    • /
    • 2018
  • Interceptor sewer is installed underground near to the river side mostly ofstate-owned land and the management efficiency of public sewage disposal facilities is decreasing as too much infiltration/inflow(I/I) and river flow to interceptor sewer are caused by broken or deteriorated sewer. This also affects the sewer pipeline project and decreases its efficiency. Therefore, the aim of this study is to investigate interceptor sewer which has influence on the reduction of the project effect. The investigation were performed for three study areas. The study includes the investigation of current condition of interceptor sewer(sewer extension, pipe diameter, pipe type, installed year, installed locations, etc), investigation of inside of sewer by CCTV accompanied by pumping and dredging works where required, investigation of inside of manholes by eyes, calculation of pollutant load using the results of investigation of flow quantity and quality. Multipoint investigations were simultaneously performed for flow quantity at confluence area and other investigations were also performed for flow quantity and BOD for interceptor sewer and comparison of pollutant load, investigation of infiltration/inflow(I/I) caused by deterioration of interceptor sewer. As the result of the study, a main reason for reduced effect of sewer pipe improvement project was analyzed as the low-density sewage and I/I in public seweage treatment Facility due to deteriorated and unmanaged interceptor sewers.

Evaluation of Particle Removal Rate in Inclined-pipe Settling System for Stormwater Infiltration (강우유출수의 침투시 부하저감을 위한 경사관 침전장치의 효율평가)

  • Kim, Sangrae;Kim, Dongkeun;Mun, Jungsoo;Han, Mooyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.719-726
    • /
    • 2009
  • One of the alternative runoff management measures is on-site runoff mitigation, such as rainwater retention tank and infiltration facilities especially the latter that is possible to manage simultaneously runoff quality and quantity as a perspective of water-cycle. This study was conducted to develop a particle separator, inclined-pipe settling system, that could improve particle removal efficiency of road runoff as a pre-treatment device of stormwater infiltration. Solid particles larger than $100{\mu}m$ are separated by simple sedimentation; however, the significant amount of pollutants with a diameter less than $100{\mu}m$ remain in suspension. Without any treatment in that case of the runoff into infiltrate, groundwater would be deteriorated and also infiltration rate would be decreased by clogging. Therefore, we suggest optimal design parameters (inclined angle, pipe length, and surface loading rate) of inclined-pipe settling system which can be designed to effectively remove particles diameter smaller then $70{\mu}m$. Thus, the results showed TSS removal efficiency more than 80% with a particle diameter between $20{\mu}m$ and $70{\mu}m$, 100% above particle diameter $70{\mu}m$ for the inflow rate $0.018 m^3/m^2{\cdot}hr$ with pipe inclined at angle $15^{\circ}$.

Estimating the return flow of irrigation water for paddies (논의 농업용수 회귀수량 추정에 관한 연구)

  • 임상준;박승우;박창언
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.87-91
    • /
    • 1998
  • Unused irrigation water due to delivery losses and overflow from paddies in an irrigation system, and groundwater releases from infiltration are eventually returned to stream. The estimate of irrigation returnflow is important to streamflow modeling and water resources planning. This study was to field monitor the irrigation water use, streamflow, lateral inflow and ground water level, and to determine the return flow of irrigation water

  • PDF

Development of a Decision Making Model for Efficient Rehabilitation of Sewer System (효율적인 하수관거 개량을 위한 의사결정모형의 개발)

  • Lee, Jung-Ho;Jun, Hwan-Don;Joo, Jin-Gul;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.127-135
    • /
    • 2008
  • The objective of sewer rehabilitation is to improve its function while eliminating inflow/infiltration (I/I) and insufficient carrying capacity (ICC). Such rehabilitation efforts, however, have not been particularly successful due to a lack of sewer data and unsystematic field practices. The present study aimed to solve these problems by developing a decision making model consisting of two models: the rehabilitation weighting model (RWM) and the rehabilitation priority model (RPM). In RWM, the I/I of each pipe in a drainage district is estimated according to various defects, with each defect given an individual weighting factor using an analytic hierarchy process (AHP). RPM determines the optimal rehabilitation priority (ORP) using a genetic algorithm (GA). The developed models can be used to overcome the problems associated with unsystematic practices and, in practice, as a decision making tool for urban sewer system rehabilitation.

Assessment of water resources by the construction of subsurface dam (지하댐 설치에 의한 수자원 개발량 평가)

  • Kim, Sang Jun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.11
    • /
    • pp.795-802
    • /
    • 2017
  • This study shows the assessment methodology for the water resources of subsurface dams. The study area is SSangcheon subsurface dam. It is at the estuary of SSangcheon watershed forming the unconfined alluvial aquifer. there are several candidate area which are geologically similar to it at East coast. The groundwater level was computed by a 2-D FDM model, where the watershed discharge is the input as the infiltration term. The baseflow computed as the mean value of 3 watershed dischrge model is $0.5m^3/sec$. And considering the inflow near the baseflow as the dry season inflow, The groundwater level according to the change of inflow and pumping rate was computed. Specifically, Using the real pumping rate $28000m^3/day$ which is equal to the supply amount of drinking water to Sokcho city, The inflow which induce the descended groundwater level to the bottom of aquifer or the ascended groundwater level that cause the surface flow was eatimated. The simulation for increased pumping rate and additional well construction to increase the water resources, was executed. And at the extreme dry season, available pumping rate was estimated.