• Title/Summary/Keyword: Infilled wall

Search Result 78, Processing Time 0.024 seconds

Effect of masonry infill walls with openings on nonlinear response of reinforced concrete frames

  • Ozturkoglu, Onur;Ucar, Taner;Yesilce, Yusuf
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.333-347
    • /
    • 2017
  • Masonry infill walls are unavoidable parts of any building to create a separation between internal space and external environment. In general, there are some prevalent openings in the infill wall due to functional needs, architectural considerations or aesthetic concerns. In current design practice, the strength and stiffness contribution of infill walls is not considered. However, the presence of infill walls may decisively influence the seismic response of structures subjected to earthquake loads and cause a different behavior from that predicted for a bare frame. Furthermore, partial openings in the masonry infill wall are significant parameter affecting the seismic behavior of infilled frames thereby decreasing the lateral stiffness and strength. The possible effects of openings in the infill wall on seismic behavior of RC frames is analytically studied by means of pushover analysis of several bare, partially and fully infilled frames having different bay and story numbers. The stiffness loss due to partial opening is introduced by the stiffness reduction factors which are developed from finite element analysis of frames considering frame-infill interaction. Pushover curves of frames are plotted and the maximum base shear forces, the yield displacement, the yield base shear force coefficient, the displacement demand, interstory drift ratios and the distribution of story shear forces are determined. The comparison of parameters both in terms of seismic demand and capacity indicates that partial openings decisively influences the nonlinear behavior of RC frames and cause a different behavior from that predicted for a bare frame or fully infilled frame.

Verifying ASCE 41 the evaluation model via field tests of masonry infilled RC frames with openings

  • Huang, Chun-Ting;Chiou, Tsung-Chih;Chung, Lap-Loi;Hwang, Shyh-Jiann;Jaung, Wen-Ching
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.157-174
    • /
    • 2020
  • The in-situ pushover test differs from the shake-table test because it is performed outdoors and thus its size is not restricted by space, which allows us to test a full-size building. However, to build a new full-size building for the test is not economical, consequently scholars around the world usually make scale structures or full-scale component units to be tested in the laboratory. However, if in-situ pushover tests can be performed on full-size structures, then the seismic behaviors of buildings during earthquakes can be grasped. In view of this, this study conducts two in-situ pushover tests of reinforced concrete (RC) buildings. One is a masonry-infilled RC building with openings (the openings ratio of masonry infill wall is between 24% and 51%) and the other is an RC building without masonry infill. These two in-situ pushover tests adopt obsolescent RC buildings, which will be demolished, to conduct experiment and successfully obtain seismic capacity curves of the buildings. The test results are available for the development or verification of a seismic evaluation model. This paper uses ASCE 41-17 as the main evaluation model and is accompanied by a simplified pushover analysis, which can predict the seismic capacity curves of low-rise buildings in Taiwan. The predicted maximum base shear values for masonry-infilled RC buildings with openings and for RC buildings without masonry infill are, respectively, 69.69% and 87.33% of the test values. The predicted initial stiffness values are 41.04% and 100.49% of the test values, respectively. It can be seen that the ASCE 41-17 evaluation model is reasonable for the RC building without masonry infill walls. In contrast, the analysis result for the masonry infilled RC building with openings is more conservative than the test value because the ASCE 41-17 evaluation model is limited to masonry infill walls with an openings ratio not exceeding 40%. This study suggests using ASCE 41-17's unreinforced masonry wall evaluation model to simulate a masonry infill wall with an openings ratio greater than 40%. After correction, the predicted maximum base shear values of the masonry infilled RC building with openings is 82.60% of the test values and the predicted initial stiffness value is 67.13% of the test value. Therefore, the proposed method in this study can predict the seismic behavior of a masonry infilled RC frame with large openings.

Effects of infill walls on RC buildings under time history loading using genetic programming and neuro-fuzzy

  • Kose, M. Metin;Kayadelen, Cafer
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.401-419
    • /
    • 2013
  • In this study, the efficiency of adaptive neuro-fuzzy inference system (ANFIS) and genetic expression programming (GEP) in predicting the effects of infill walls on base reactions and roof drift of reinforced concrete frames were investigated. Current standards generally consider weight and fundamental period of structures in predicting base reactions and roof drift of structures by neglecting numbers of floors, bays, shear walls and infilled bays. Number of stories, number of bays in x and y directions, ratio of shear wall areas to the floor area, ratio of bays with infilled walls to total number bays and existence of open story were selected as parameters in GEP and ANFIS modeling. GEP and ANFIS have been widely used as alternative approaches to model complex systems. The effects of these parameters on base reactions and roof drift of RC frames were studied using 3D finite element method on 216 building models. Results obtained from 3D FEM models were used to in training and testing ANFIS and GEP models. In ANFIS and GEP models, number of floors, number of bays, ratio of shear walls and ratio of infilled bays were selected as input parameters, and base reactions and roof drifts were selected as output parameters. Results showed that the ANFIS and GEP models are capable of accurately predicting the base reactions and roof drifts of RC frames used in the training and testing phase of the study. The GEP model results better prediction compared to ANFIS model.

Nonlinear interaction behaviour of infilled frame-isolated footings-soil system subjected to seismic loading

  • Agrawal, Ramakant;Hora, M.S.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.85-107
    • /
    • 2012
  • The building frame and its foundation along with the soil on which it rests, together constitute a complete structural system. In the conventional analysis, a structure is analysed as an independent frame assuming unyielding supports and the interactive response of soil-foundation is disregarded. This kind of analysis does not provide realistic behaviour and sometimes may cause failure of the structure. Also, the conventional analysis considers infill wall as non-structural elements and ignores its interaction with the bounding frame. In fact, the infill wall provides lateral stiffness and thus plays vital role in resisting the seismic forces. Thus, it is essential to consider its effect especially in case of high rise buildings. In the present research work the building frame, infill wall, isolated column footings (open foundation) and soil mass are considered to act as a single integral compatible structural unit to predict the nonlinear interaction behaviour of the composite system under seismic forces. The coupled isoparametric finite-infinite elements have been used for modelling of the interaction system. The material of the frame, infill and column footings has been assumed to follow perfectly linear elastic relationship whereas the well known hyperbolic soil model is used to account for the nonlinearity of the soil mass.

Pushover Tests of 1:5 Scale 3-Story Reinforced Concrete Frames

  • Lee, Han-Seon;Woo, Sung-Woo;Heo, Yun-Sup;Seon, Jin-Gyu
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.165-174
    • /
    • 1999
  • The objective of the research stated herein is to observe the elastic and inelastic behaviors and ultimate capacity of 1:5 scale 3-story reinforced concrete frame. Pushover tests were performed to 1:5 scale 3-story reinforced concrete frames with and without infilled masonry. To simulate the earthquake effect, the lateral force distribution was maintained by an inverted triang1e by using the whiffle tree. From the test results, the relation ships between the total lateral load and the roof drift, the distribution of column shears, the relation between story shear and story drift, and the angular rotations at the critical portions of structures were obtained. The effects of infilled masonry were investigated with regards to the stiffness, strength, and ductility of structures. Final collapse modes of structures with and without infilled masonry were compared.

  • PDF

Dynamic Behaviour of Masonry inFilled Reinforced Concrete Frames with Non-Seismic Details (진동대실험을 통한 비내진상세를 가지는 RC 골조의 조적채움벽 유무에 따른 동적 거동 평가)

  • Baek, Eun-Rim;Kim, Kyung-Min;Cheon, Ju-Hyun;Oh, Sang-Hoon;Lee, Sang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.121-129
    • /
    • 2017
  • In this paper, the shake table test for the masonry infilled reinforced concrete frame with non-seismic details was carried out in order to evaluate its dynamic behaviour and damage under seismic condition. The tested specimens were the RC frame and the masonry infilled RC frame and the dynamic characteristics, such as a resonant period, acceleration response, displacement response and base shear force response, were compared between them. As a result of the shake table test, RC frame specimen had flexural cracks at the top and bottom of the column and shear cracks at the joints. In the case of masonry infilled RC frame, the damage of the frame was relatively minor but the sliding cracks and diagonal shear cracks on the masonry wall were severe at the final excitation. The resonant period of infilled RC frame specimen was shorter than that of the RC frame specimen because the masonry infill contributed to increase the stiffness. The maximum displacement response of the infilled RC frame specimen was decreased by about 20% than the RC frame specimen. It was analyzed that the masonry infill wall applied in this study contributed to increase the lateral strength of the RC frame with non - seismic detail by about 2.2 times and the stiffness by about 1.6 times.

Experimental tests and global modeling of masonry infilled frames

  • Bergami, Alessandro Vittorio;Nuti, Camillo
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.281-303
    • /
    • 2015
  • The effects of infill panels on the response of r.c. frames subjected to seismic action are widely recognized. Numerous experimental investigations were effected and several analytical models were developed on this subject. This work, which is part of a larger project dealing with specific materials and structures commonly used in Italy, discusses experimental tests on masonry and samples of bare and infilled portals. The experimental activity includes tests on elemental materials, and 12 wall samples. Finally, three one-bay one-story reinforced concrete frames, designed according to the outdated Italian technical code D.M. 1996 without seismic details, were tested (bare and infilled) under constant vertical and cyclic lateral load. The first cracks observed on the framed walls occurred at a drift of about 0.3%, reaching its maximum capacity at a drift of 0.5% while retaining its capacity up to a drift of 0.6%. Infill contributed to both the stiffness and strength of the bare reinforced concrete frame at small drifts thus improving overall system behavior. In addition to the experimental activities, previously mentioned, the recalibration of a model proposed by Comberscue (1996) was evaluated. The accuracy of an OpenSees non linear fiber based model of the prototype tested, including a strut element was verified through a comparison with the final experimental results. This work has been partially supported by research grant DPC-ReLUIS 2014.

Cyclic Test for RC Frame with Infilled Steel Plate (강판채움벽을 갖는 RC 골조에 대한 반복가력 실험)

  • Choi, In Rak;Park, Hong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.115-125
    • /
    • 2009
  • An experimental study was performed to investigate the cyclic behavior of the reinforced concrete frame with infilled steel plate. For this purpose, three-story compositewalls using infilled steel plates (RCSPW) were tested. The parameters for this test were the reinforcement ratio of the column and opening in the infilled steel plate. A reinforced concrete infilled wall (RCIW) and a reinforced concrete frame (RCF) were also tested for comparison. The deformation capacity of the RCSPW specimen was significantly greater than that of the RCIW specimen, although the two specimens exhibited the same load-carrying capacity. Like the steel plate walls with the steel boundary frame, RCSPW specimens showed excellent strength, deformation capacity, and energy dissipation capacity. Furthermore, by using infilled steel plates, shear cracking and failure of the column-beam joint were prevented. By using a strip model, the stiffness and strength of the RCSPW specimens were predicted. The results were compared with the test results.

Analysis on the Flexural Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel (L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 휨 거동 분석)

  • Yu, Sung-Yong;Ju, Ho-Seong;Son, Guk-Won
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.52-62
    • /
    • 2015
  • This study aims at developing a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were performed on one unreinforced beam-column specimen and two reinforced specimens with U-type precast wall panels. Top shear connection of the PC panel was required to show the composite strength of RC column and PC wall panel. However, the strength of the connection did not influence directly on the ultimate loading capacities of the specimens in the positive loading because the loaded RC column push the side of PC wall panel and it moved horizontally before the shear connector receive the concentrated shear force in the positive loading process. Under the positive loading sequence(push loading), the reinforced concrete column and PC panel showed flexural strength which is larger than 97% of the composite section because of the rigid binding at the top of precast panel. Similar load-deformation relationship and ultimated horizontal load capacities were shown in the test of PR1-LA and PR1-LP specimens because they have same section dimension and detail at the flexural critical section. An average of 4.7 times increase in the positive maximum loading(average 967kN) and 2.7 times increase in the negative maximum loading(average 592.5kN) had resulted from the test of seismic resistant specimens with anchored and welded steel plate connections than that of unreinforced beam-column specimen. The maximum drift ratios were also shown between 1.0% and 1.4%.

Shaking Table Tests of 1/12-Scale RC Bearing-Wall System with Bottom Piloti Stories Having Eccentric Shear-Wall (편심을 가진 1/12 축소 RC 주상복합구조물의 진동대실험)

  • 이한선;고동우;권기혁;김병현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.185-190
    • /
    • 2001
  • The severe shortage of the available sites in the highly developed downtown area in Korea necessitates the construction of high-rise buildings which meet the need of residence and commercial activity simultaneously. The objective of this study is to investigate the seismic performance of this type of building structures. For this purpose, two 1:12 scale 17-story reinforced concrete model structures were constructed according to the similitude law, in which the upper 15 stories have a bearing-wall system while the lower 2-story frames with infilled shear wall have two different layouts of the plan : The one has symmetric plan and the other has unsymmetric plan. Then, this model was subjected to a series of earthquake excitations. The test results show that the layout of shear wall has the negligible effect on the natural period and the base shear coefficient, but great effect on the failure mode of beam-column joint at flexible side frame.

  • PDF